Version 230 (modified by 5 years ago) ( diff ) | ,
---|
Spectrum Analysis
The differential flux
per area, time and energy interval is defined asOften
is also referred to as as observation time and effective collection area is a constant. The effective area is then defined as . Note that at large distances the efficiency vanishes, so that the effective area is an (energy dependent) constant while and the efficiency are mutually dependent.For an observation with an effective observation time
, this yields in a given Energy interval :For simplicity, in the following,
will be replaced by just but always refers to to a given energy interval. If data is binned in a histogram, the relation between the x-value for the bin and the corresponding interval is not well defined. Resonable definitions are the bin center (usually in logarithmic bins) or the average energy.The total area
and the corresponding efficiency are of course only available for simulated data. For simulated data, is the production area and the corresponding energy dependent efficiency of the analysis chain. For a given energy bin, the efficiency is then defined as
where
is the number of simulated events in this energy bin and the number of *excess* events that are produced by the analysis chain.Note that the exact calculation of the efficiency
depends on prior knowledge of the correct source spectrum . Therefore, it is strictly speaking only correct if the simulated spectrum and the real spectrum are identical. As the real spectrum is unknown, special care has to be taken of the systematic introduced by the assumption of .Zenith Angle Weights and Spectral Weights
While the source spectrum
is of course independent of the zenith angle of the observation, the efficiency is not, so that
In addition, the observed differential flux depends on the zenith angle. That means that for a correct calculation of the efficiency, the number of simulated events per zenith angle interval has to match the observation time distribution.
This can be achieved by applying zenith angle dependent weights
to each simulated event. Similarly, the discussed requirement of the match between result spectrum and simulated spectrum can be achieved applying energy dependent weights .As the simulated energy spectrum is independent of zenith angle, it can be expressed as
with the differential energy spectrum
and the zenith angle distribution and the normalization
The contents of one energy bin
and one zenith angle bin can then be written as
and the normalization
Excess
The number of excess events, for data and simulations, is defined as
where
is the number of events identified as potential gammas from the source direction ('on-source') and the number of gamma-like events measured 'off-source'. Note that for Simulations, is not necessarily zero for wobble-mode observations as an event can survive the analysis for on- and off-events, if this is not prevented by the analysis (cuts).The average number of background events
is the total number of background events from all off-regions times the corresponding weight (often referred to as ). For five off-regions, this yields
Assuming Gaussian errors, the statistical error is thus
For data this immediately resolves to
with the Poisson (counting) error
.For the simulations, the error on
is the error on the weighted sum
Code
In the following
refers to a number of simulated events and to a number of measured (excess) events.is the number of produced events in the energy interval and the zenith angle interval . The weighted number of events in that interval is then
Since
with the spectral weight to adapt the spectral shape of the simulated spectrum to the real (measured) spectrum of the source and the weight to adapt to oberservation time versus zenith angle.
The weighted number of produced events
in the total energy interval and the total zenith angle interval is then
with
being the total number of produced events.For a sum of weights, e.g.
the corresponding error isAs the energy is well defined,
and thus
The weights are defined as follow:
where
is the simulated spectrum and the (unknown) real source spectrum. is a normalization constant. The zenith angle weights in the interval are defined as
where
is the number of produced events in the interval and is the total observation time in the same zenith angle interval. is the normalization constant. The error on the weight in each individual -bin with and is then
While
is given by the data acquisition and 1s per 5min run, is just the statistical error of the number of events.As the efficiency
for an energy interval is calculated as
and
and are both expressed as the sum given above, the constants and cancel.The differential flux in an energy interval
is then given as
Where
is total area of production and the total observation time. The number of measured excess events is in that energy interval is .Using Gaussian error propagation, the error in a given energy interval
is then given by
with
.