source: trunk/MagicSoft/Mars/mextralgo/MExtralgoSpline.cc@ 8240

Last change on this file since 8240 was 8165, checked in by tbretz, 18 years ago
*** empty log message ***
File size: 12.5 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de>
18! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
19!
20! Copyright: MAGIC Software Development, 2002-2006
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MExtralgoSpline
28//
29// Fast Spline extractor using a cubic spline algorithm, adapted from
30// Numerical Recipes in C++, 2nd edition, pp. 116-119.
31//
32// The coefficients "ya" are here denoted as "fVal" corresponding to
33// the FADC value subtracted by the clock-noise corrected pedestal.
34//
35// The coefficients "y2a" get immediately divided 6. and are called here
36// fDer2 although they are now not exactly the second derivative
37// coefficients any more.
38//
39// The calculation of the cubic-spline interpolated value "y" on a point
40// "x" along the FADC-slices axis becomes: EvalAt(x)
41//
42// The coefficients fDer2 are calculated with the simplified
43// algorithm in InitDerivatives.
44//
45// This algorithm takes advantage of the fact that the x-values are all
46// separated by exactly 1 which simplifies the Numerical Recipes algorithm.
47// (Note that the variables fDer are not real first derivative coefficients.)
48//
49//////////////////////////////////////////////////////////////////////////////
50#include "MExtralgoSpline.h"
51
52#include <TRandom.h>
53
54#include "../mbase/MMath.h"
55
56using namespace std;
57
58// --------------------------------------------------------------------------
59//
60// Calculate the first and second derivative for the splie.
61//
62// The coefficients are calculated such that
63// 1) fVal[i] = Eval(i, 0)
64// 2) Eval(i-1, 1)==Eval(i, 0)
65//
66// In other words: The values with the index i describe the spline
67// between fVal[i] and fVal[i+1]
68//
69void MExtralgoSpline::InitDerivatives() const
70{
71 if (fNum<2)
72 return;
73
74 fDer1[0] = 0.;
75 fDer2[0] = 0.;
76
77 for (Int_t i=1; i<fNum-1; i++)
78 {
79 const Float_t pp = fDer2[i-1] + 4.;
80
81 fDer2[i] = -1.0/pp;
82
83 const Float_t d1 = fVal[i+1] - 2*fVal[i] + fVal[i-1];
84 fDer1[i] = (6.0*d1-fDer1[i-1])/pp;
85 }
86
87 fDer2[fNum-1] = 0.;
88
89 for (Int_t k=fNum-2; k>=0; k--)
90 fDer2[k] = fDer2[k]*fDer2[k+1] + fDer1[k];
91
92 for (Int_t k=fNum-2; k>=0; k--)
93 fDer2[k] /= 6.;
94}
95
96// --------------------------------------------------------------------------
97//
98// Returns the highest x value in [min;max[ at which the spline in
99// the bin i is equal to y
100//
101// min and max are defined to be [0;1]
102//
103// The default for min is 0, the default for max is 1
104// The defaule for y is 0
105//
106Double_t MExtralgoSpline::FindY(Int_t i, Double_t y, Double_t min, Double_t max) const
107{
108 // y = a*x^3 + b*x^2 + c*x + d'
109 // 0 = a*x^3 + b*x^2 + c*x + d' - y
110
111 // Calculate coefficients
112 const Double_t a = fDer2[i+1]-fDer2[i];
113 const Double_t b = 3*fDer2[i];
114 const Double_t c = fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1];
115 const Double_t d = fVal[i] - y;
116
117 Double_t x1, x2, x3;
118 const Int_t rc = MMath::SolvePol3(a, b, c, d, x1, x2, x3);
119
120 Double_t x = -1;
121 if (rc>0 && x1>=min && x1<max && x1>x)
122 x = x1;
123 if (rc>1 && x2>=min && x2<max && x2>x)
124 x = x2;
125 if (rc>2 && x3>=min && x3<max && x3>x)
126 x = x3;
127
128 return x<0 ? -1 : x+i;
129}
130
131// --------------------------------------------------------------------------
132//
133// Search analytically downward for the value y of the spline, starting
134// at x, until x==0. If y is not found -1 is returned.
135//
136Double_t MExtralgoSpline::SearchY(Float_t x, Float_t y) const
137{
138 if (x>=fNum-1)
139 x = fNum-1.0001;
140
141 Int_t i = TMath::FloorNint(x);
142 Double_t rc = FindY(i, y, 0, x-i);
143 while (--i>=0 && rc<0)
144 rc = FindY(i, y);
145
146 return rc;
147}
148
149// --------------------------------------------------------------------------
150//
151// Do a range check an then calculate the integral from start-fRiseTime
152// to start+fFallTime. An extrapolation of 0.5 slices is allowed.
153//
154Float_t MExtralgoSpline::CalcIntegral(Float_t pos) const
155{
156/*
157 // The number of steps is calculated directly from the integration
158 // window. This is the only way to ensure we are not dealing with
159 // numerical rounding uncertanties, because we always get the same
160 // value under the same conditions -- it might still be different on
161 // other machines!
162 const Float_t start = pos-fRiseTime;
163 const Float_t step = 0.2;
164 const Float_t width = fRiseTime+fFallTime;
165 const Float_t max = fNum-1 - (width+step);
166 const Int_t num = TMath::Nint(width/step);
167
168 // The order is important. In some cases (limlo-/limup-check) it can
169 // happen that max<0. In this case we start at 0
170 if (start > max)
171 start = max;
172 if (start < 0)
173 start = 0;
174
175 start += step/2;
176
177 Double_t sum = 0.;
178 for (Int_t i=0; i<num; i++)
179 {
180 // Note: if x is close to one integer number (= a FADC sample)
181 // we get the same result by using that sample as klo, and the
182 // next one as khi, or using the sample as khi and the previous
183 // one as klo (the spline is of course continuous). So we do not
184 // expect problems from rounding issues in the argument of
185 // Floor() above (we have noticed differences in roundings
186 // depending on the compilation options).
187
188 sum += EvalAt(start + i*step);
189
190 // FIXME? Perhaps the integral should be done analitically
191 // between every two FADC slices, instead of numerically
192 }
193 sum *= step; // Transform sum in integral
194
195 return sum;
196 */
197
198 // In the future we will calculate the intgeral analytically.
199 // It has been tested that it gives identical results within
200 // acceptable differences.
201
202 // We allow extrapolation of 1/2 slice.
203 const Float_t min = fRiseTime; //-0.5+fRiseTime;
204 const Float_t max = fNum-1-fFallTime; //fNum-0.5+fFallTime;
205
206 if (pos<min)
207 pos = min;
208 if (pos>max)
209 pos = max;
210
211 return EvalInteg(pos-fRiseTime, pos+fFallTime);
212}
213
214Float_t MExtralgoSpline::ExtractNoise(/*Int_t iter*/)
215{
216 if (fNum<5)
217 return 0;
218
219 // FIXME: Shell we keep the extraction inside one slice
220 // or randomize it along the extraction window?
221 const Float_t nsx = gRandom->Uniform(); //iter * fResolution;
222
223 if (fExtractionType == kAmplitude)
224 return Eval(2, nsx);
225 else
226 return CalcIntegral(2 + nsx);
227}
228
229void MExtralgoSpline::Extract(Byte_t sat, Int_t maxbin)
230{
231 fSignal = 0;
232 fTime = 0;
233 fSignalDev = -1;
234 fTimeDev = -1;
235
236 if (fNum<2)
237 return;
238/*
239 //
240 // Allow no saturated slice and
241 // Don't start if the maxpos is too close to the limits.
242 //
243
244 const Bool_t limlo = maxbin < TMath::Ceil(fRiseTime);
245 const Bool_t limup = maxbin > fNum-TMath::Ceil(fFallTime)-1;
246 if (sat || limlo || limup)
247 {
248 fTimeDev = 1.0;
249 if (fExtractionType == kAmplitude)
250 {
251 fSignal = fVal[maxbin];
252 fTime = maxbin;
253 fSignalDev = 0; // means: is valid
254 return;
255 }
256
257 fSignal = CalcIntegral(limlo ? 0 : fNum);
258 fTime = maxbin - 1;
259 fSignalDev = 0; // means: is valid
260 return;
261 }
262
263 //
264 // Now find the maximum
265 //
266
267 Float_t step = 0.2; // start with step size of 1ns and loop again with the smaller one
268
269 Int_t klo = maxbin-1;
270
271 Float_t maxpos = maxbin;//! Current position of the maximum of the spline
272 Float_t max = fVal[maxbin];//! Current maximum of the spline
273
274 //
275 // Search for the maximum, starting in interval maxpos-1 in steps of 0.2 till maxpos-0.2.
276 // If no maximum is found, go to interval maxpos+1.
277 //
278 for (Int_t i=0; i<TMath::Nint(TMath::Ceil((1-0.3)/step)); i++)
279 {
280 const Float_t x = klo + step*(i+1);
281 //const Float_t y = Eval(klo, x);
282 const Float_t y = Eval(klo, x-klo);
283 if (y > max)
284 {
285 max = y;
286 maxpos = x;
287 }
288 }
289
290 //
291 // Search for the absolute maximum from maxpos to maxpos+1 in steps of 0.2
292 //
293 if (maxpos > maxbin - 0.1)
294 {
295 klo = maxbin;
296
297 for (Int_t i=0; i<TMath::Nint(TMath::Ceil((1-0.3)/step)); i++)
298 {
299 const Float_t x = klo + step*(i+1);
300 //const Float_t y = Eval(klo, x);
301 const Float_t y = Eval(klo, x-klo);
302 if (y > max)
303 {
304 max = y;
305 maxpos = x;
306 }
307 }
308 }
309
310 //
311 // Now, the time, abmax and khicont and klocont are set correctly within the previous precision.
312 // Try a better precision.
313 //
314 const Float_t up = maxpos+step - 3.0*fResolution;
315 const Float_t lo = maxpos-step + 3.0*fResolution;
316 const Float_t abmaxpos = maxpos;
317
318 step = 2.*fResolution; // step size of 0.1 FADC slices
319
320 for (int i=0; i<TMath::Nint(TMath::Ceil((up-abmaxpos)/step)); i++)
321 {
322 const Float_t x = abmaxpos + (i+1)*step;
323 //const Float_t y = Eval(klo, x);
324 const Float_t y = Eval(klo, x-klo);
325 if (y > max)
326 {
327 max = y;
328 maxpos = x;
329 }
330 }
331
332 //
333 // Second, try from time down to time-0.2 in steps of fResolution.
334 //
335
336 //
337 // Test the possibility that the absolute maximum has not been found between
338 // maxpos and maxpos+0.05, then we have to look between maxpos-0.05 and maxpos
339 // which requires new setting of klocont and khicont
340 //
341 if (abmaxpos < klo + fResolution)
342 klo--;
343
344 for (int i=TMath::Nint(TMath::Ceil((abmaxpos-lo)/step))-1; i>=0; i--)
345 {
346 const Float_t x = abmaxpos - (i+1)*step;
347 //const Float_t y = Eval(klo, x);
348 const Float_t y = Eval(klo, x-klo);
349 if (y > max)
350 {
351 max = y;
352 maxpos = x;
353 }
354 }
355
356 fTime = maxpos;
357 fTimeDev = fResolution;
358 fSignal = CalcIntegral(maxpos);
359 fSignalDev = 0; // means: is valid
360
361 return;
362*/
363 // --- Start NEW ---
364
365 // This block extracts values very similar to the old algorithm...
366 // for max>10
367 /* Most accurate (old identical) version:
368
369 Float_t xmax=maxpos, ymax=Eval(maxpos-1, 1);
370 Int_t rc = GetMaxPos(maxpos-1, xmax, ymax);
371 if (xmax==maxpos)
372 {
373 GetMaxPos(maxpos, xmax, ymax);
374
375 Float_t y = Eval(maxpos, 1);
376 if (y>ymax)
377 {
378 ymax = y;
379 xmax = maxpos+1;
380 }
381 }*/
382
383 Float_t maxpos, maxval;
384 // FIXME: Check the default if no maximum found!!!
385 GetMaxAroundI(maxbin, maxpos, maxval);
386
387 // --- End NEW ---
388
389 if (fExtractionType == kAmplitude)
390 {
391 fTime = maxpos;
392 fTimeDev = 0;
393 fSignal = maxval;
394 fSignalDev = 0; // means: is valid
395 return;
396 }
397
398 // Search downwards for maxval/2
399 // By doing also a search upwards we could extract the pulse width
400 const Double_t x1 = SearchY(maxpos, maxval/2);
401
402 fTime = x1;
403 fTimeDev = 0;
404 fSignal = CalcIntegral(maxpos);
405 fSignalDev = 0; // means: is valid
406
407 //
408 // Loop from the beginning of the slice upwards to reach the maxhalf:
409 // With means of bisection:
410 //
411 /*
412 static const Float_t sqrt2 = TMath::Sqrt(2.);
413
414 step = sqrt2*3*0.061;//fRiseTime;
415 Float_t x = maxpos-0.86-3*0.061;//fRiseTime*1.25;
416
417// step = sqrt2*0.5;//fRiseTime;
418// Float_t x = maxpos-1.25;//fRiseTime*1.25;
419
420 Int_t cnt =0;
421 while (cnt++<30)
422 {
423 const Float_t y=EvalAt(x);
424
425 if (TMath::Abs(y-maxval/2)<fResolution)
426 break;
427
428 step /= sqrt2; // /2
429 x += y>maxval/2 ? -step : +step;
430 }
431 */
432
433 //
434 // Now integrate the whole thing!
435 //
436 // fTime = cnt==31 ? -1 : x;
437 // fTimeDev = fResolution;
438 // fSignal = cnt==31 ? CalcIntegral(x) : CalcIntegral(maxpos);
439 // fSignalDev = 0; // means: is valid
440}
Note: See TracBrowser for help on using the repository browser.