Changeset 6441 for trunk/MagicSoft/TDAS-Extractor/Calibration.tex
- Timestamp:
- 02/13/05 23:43:29 (20 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicSoft/TDAS-Extractor/Calibration.tex
r6439 r6441 624 624 625 625 \begin{equation} 626 t^{res}_i \approx \sigma(\delta t_i)/ sqrt(2)626 t^{res}_i \approx \sigma(\delta t_i)/\sqrt(2) 627 627 \end{equation} 628 628 629 Figures~\ref{fig:reltimesinner10leduv} and~\ref{fig:reltimesouter10leduv} show distributions of $\delta t_i$ 630 for 631 one typical inner pixel and one typical outer pixel and a non-saturating calibration pulse of UV-light, 632 obtained with three different extractors. One can see that the first two yield a Gaussian distribution 633 to a good approximation, whereas the third extractor shows a three-peak structure and cannot be fitted. 634 We discarded that particular extractor for this reason. 635 636 \begin{figure}[htp] 637 \centering 638 \includegraphics[width=0.3\linewidth]{RelArrTime_Pixel97_10LedUV_Extractor32.eps} 639 \includegraphics[width=0.32\linewidth]{RelArrTime_Pixel97_10LedUV_Extractor23.eps} 640 \includegraphics[width=0.32\linewidth]{RelArrTime_Pixel97_10LedUV_Extractor17.eps} 641 \caption{Example of a two distributions of relative arrival times of an inner pixel with respect to 642 the arrival time of the reference pixel Nr. 1. The left plot shows the result using the digital filter 643 (extractor \#32), the central plot shows the result obtained with the half-maximum of the spline and the 644 right plot the result of the sliding window with a window size of 2 FADC slices (extractor \#17). A 645 medium sized UV-pulse (10Leds UV) has been used which does not saturate the high-gain readout channel.} 646 \label{fig:reltimesinner10leduv} 647 \end{figure} 648 649 \begin{figure}[htp] 650 \centering 651 \includegraphics[width=0.31\linewidth]{RelArrTime_Pixel400_10LedUV_Extractor32.eps} 652 \includegraphics[width=0.31\linewidth]{RelArrTime_Pixel400_10LedUV_Extractor23.eps} 653 \includegraphics[width=0.31\linewidth]{RelArrTime_Pixel400_10LedUV_Extractor17.eps} 654 \caption{Example of a two distributions of relative arrival times of an outer pixel with respect to 655 the arrival time of the reference pixel Nr. 1. The left plot shows the result using the digital filter 656 (extractor \#32), the central plot shows the result obtained with the half-maximum of the spline and the 657 right plot the result of the sliding window with a window size of 2 FADC slices (extractor \#17). A 658 medium sized UV-pulse (10Leds UV) has been used which does not saturate the high-gain readout channel.} 659 \label{fig:reltimesouter10leduv} 660 \end{figure} 661 662 Figures~\ref{fig:reltimesinner10ledsblue} and~\ref{fig:reltimesouter10ledsblue} show distributions of 663 $<\delta t_i>$ for 664 one typical inner and one typical outer pixel and a high-gain-saturating calibration pulse of blue-light, 665 obtained with two different extractors. One can see that the first (extractor \#23) yields a Gaussian 666 distribution to a good approximation. 667 668 \begin{figure}[htp] 669 \centering 670 \includegraphics[width=0.31\linewidth]{RelArrTime_Pixel97_10LedBlue_Extractor23.eps} 671 \includegraphics[width=0.31\linewidth]{RelArrTime_Pixel97_10LedBlue_Extractor32.eps} 672 \caption{Example of a two distributions of relative arrival times of an inner pixel with respect to 673 the arrival time of the reference pixel Nr. 1. The left plot shows the result using the half-maximum of the spline (extractor \#23), the right plot shows the result obtained with the digital filter 674 (extractor \#32). A 675 medium sized Blue-pulse (10Leds Blue) has been used which saturates the high-gain readout channel.} 676 \label{fig:reltimesinner10ledsblue} 677 \end{figure} 678 679 680 681 \begin{figure}[htp] 682 \centering 683 \includegraphics[width=0.31\linewidth]{RelArrTime_Pixel400_10LedBlue_Extractor23.eps} 684 \includegraphics[width=0.31\linewidth]{RelArrTime_Pixel400_10LedBlue_Extractor32.eps} 685 \caption{Example of a two distributions of relative arrival times of an outer pixel with respect to 686 the arrival time of the reference pixel Nr. 1. The left plot shows the result using the half-maximum of the spline (extractor \#23), the right plot shows the result obtained with the digital filter 687 (extractor \#32). A 688 medium sized Blue-pulse (10Leds Blue) has been used which saturates the high-gain readout channel.} 689 \label{fig:reltimesouter10ledsblue} 690 \end{figure} 629 Figures~\ref{fig:reltimesinner10leduv} show distributions of $\delta t_i$ 630 for a typical inner pixel and a non-saturating calibration pulse of UV-light, 631 obtained with six different extractors. One can see that all of them yield acceptable Gaussian distributions, 632 except for the sliding window extracting 2 slices which shows a three-peak structure and cannot be fitted. 633 We discarded that particular extractor for the further studies. 634 635 \begin{figure}[htp] 636 \centering 637 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor17.eps} 638 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor18.eps} 639 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor23.eps} 640 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor24.eps} 641 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor30.eps} 642 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor31.eps} 643 \caption{Examples of a distributions of relative arrival times $\delta t_i$ of an inner pixel (Nr. 100) 644 Top: Sliding Window over 2 FADC slices (\#17) and 4 FADC slices (\#18). 645 Center: Spline with maximum position (\#23) and half-maximum position (\#24). 646 Bottom: Digital Filter with UV-calibration pulse weights over 6 slices (\#30) and 4 slices (\#31). 647 A medium sized UV-pulse (5\,Leds UV) has been used which does not saturate the high-gain readout channel.} 648 \label{fig:reltimesinnerleduv} 649 \end{figure} 650 651 %\begin{figure}[htp] 652 %\centering 653 %\includegraphics[width=0.31\linewidth]{RelArrTime_Pixel400_10LedUV_Extractor32.eps} 654 %\includegraphics[width=0.31\linewidth]{RelArrTime_Pixel400_10LedUV_Extractor23.eps} 655 %\includegraphics[width=0.31\linewidth]{RelArrTime_Pixel400_10LedUV_Extractor17.eps} 656 %\caption{Example of a two distributions of relative arrival times of an outer pixel with respect to 657 %the arrival time of the reference pixel Nr. 1. The left plot shows the result using the digital filter 658 % (extractor \#32), the central plot shows the result obtained with the half-maximum of the spline and the 659 %right plot the result of the sliding window with a window size of 2 FADC slices (extractor \#17). A 660 %medium sized UV-pulse (10Leds UV) has been used which does not saturate the high-gain readout channel.} 661 %\label{fig:reltimesouter10leduv} 662 %\end{figure} 663 664 %\begin{figure}[htp] 665 %\centering 666 %\includegraphics[width=0.31\linewidth]{RelArrTime_Pixel97_10LedBlue_Extractor23.eps} 667 %\includegraphics[width=0.31\linewidth]{RelArrTime_Pixel97_10LedBlue_Extractor32.eps} 668 %\caption{Example of a two distributions of relative arrival times of an inner pixel with respect to 669 %the arrival time of the reference pixel Nr. 1. The left plot shows the result using the half-maximum of the spline (extractor \#23), the right plot shows the result obtained with the digital filter 670 %(extractor \#32). A 671 %medium sized Blue-pulse (10Leds Blue) has been used which saturates the high-gain readout channel.} 672 %\label{fig:reltimesinner10ledsblue} 673 %\end{figure} 674 675 676 677 %\begin{figure}[htp] 678 %\centering 679 %\includegraphics[width=0.31\linewidth]{RelArrTime_Pixel400_10LedBlue_Extractor23.eps} 680 %\includegraphics[width=0.31\linewidth]{RelArrTime_Pixel400_10LedBlue_Extractor32.eps} 681 %\caption{Example of a two distributions of relative arrival times of an outer pixel with respect to 682 %the arrival time of the reference pixel Nr. 1. The left plot shows the result using the half-maximum of the spline (extractor \#23), the right plot shows the result obtained with the digital filter 683 %(extractor \#32). A 684 %medium sized Blue-pulse (10Leds Blue) has been used which saturates the high-gain readout channel.} 685 %\label{fig:reltimesouter10ledsblue} 686 %\end{figure} 691 687 692 688 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Note:
See TracChangeset
for help on using the changeset viewer.