Changeset 6446 for trunk/MagicSoft/TDAS-Extractor/Calibration.tex
- Timestamp:
- 02/14/05 01:06:27 (20 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/MagicSoft/TDAS-Extractor/Calibration.tex
r6441 r6446 627 627 \end{equation} 628 628 629 Figures~\ref{fig:reltimesinner 10leduv} showdistributions of $\delta t_i$629 Figures~\ref{fig:reltimesinnerleduv} shows the distributions of $\delta t_i$ 630 630 for a typical inner pixel and a non-saturating calibration pulse of UV-light, 631 obtained with six different extractors. One can see that all of them yield acceptable Gaussian distributions, 631 obtained with six different extractors. 632 One can see that all of them yield acceptable Gaussian distributions, 632 633 except for the sliding window extracting 2 slices which shows a three-peak structure and cannot be fitted. 633 We discarded that particular extractor f orthe further studies.634 We discarded that particular extractor from the further studies. 634 635 635 636 \begin{figure}[htp] … … 641 642 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor30.eps} 642 643 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor31.eps} 643 \caption{Examples of a distributions of relative arrival times $\delta t_i$ of an inner pixel (Nr. 100) 644 Top: Sliding Window over 2 FADC slices (\#17) and 4 FADC slices (\#18).645 Center: Spline with maximum position (\#23) and half-maximum position (\#24).646 Bottom: Digital Filter with UV-calibration pulse weights over 6 slices (\#30) and 4 slices (\#31).644 \caption{Examples of a distributions of relative arrival times $\delta t_i$ of an inner pixel (Nr. 100) \protect\\ 645 Top: {\textit{\bf MExtractTimeAndChargeSlidingWindow}} over 2 slices (\#17) and 4 slices (\#18) \protect\\ 646 Center: {\textit{\bf MExtractTimeAndChargeSpline}} with maximum (\#23) and half-maximum pos. (\#24) \protect\\ 647 Bottom: {\textit{\bf MExtractTimeAndChargeDigitalFilter}} fitted to a UV-calibration pulse over 6 slices (\#30) and 4 slices (\#31) \protect\\ 647 648 A medium sized UV-pulse (5\,Leds UV) has been used which does not saturate the high-gain readout channel.} 648 649 \label{fig:reltimesinnerleduv} 650 \end{figure} 651 652 Figures~\ref{fig:reltimesinnerledblue1} and~\ref{fig:reltimesinnerledblue2} show 653 the distributions of $\delta t_i$ for a typical inner pixel and a saturating calibration 654 pulse of blue light. 655 One can see that the sliding window extractors yield double Gaussian structures, except for the 656 largest window sizes of 8 and 10 FADC slices. Even then, the distributions are not exactly Gaussian. 657 The maximum position extracting spline also yields distributions which are not exactly Gaussian and seem 658 to miss the exact arrival time in quite some events. Only the position of the half-maximum gives the 659 expected result of a single Gaussian distribution. 660 A similiar problem occurs in the case of the digital filter: If one takes the correct weights 661 (fig.~\ref{fig:reltimesinnerledblue2} bottom), the distribution is perfectly Gaussian and the resolution good, 662 however a rather slight change from the blue calibration pulse weights to cosmics pulses weights (top) 663 adds a secondary peak of events with mis-reconstructed arrival times. 664 665 \begin{figure}[htp] 666 \centering 667 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor18_logain.eps} 668 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor19_logain.eps} 669 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor21_logain.eps} 670 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor22_logain.eps} 671 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor23_logain.eps} 672 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor24_logain.eps} 673 \caption{Examples of a distributions of relative arrival times $\delta t_i$ of an inner pixel (Nr. 100) \protect\\ 674 Top: {\textit{\bf MExtractTimeAndChargeSlidingWindow}} over 4 slices (\#18) and 6 slices (\#19) \protect\\ 675 Center: {\textit{\bf MExtractTimeAndChargeSlidingWindow}} over 8 slices (\#20) and 10 slices (\#21)\protect\\ 676 Bottom: {\textit{\bf MExtractTimeAndChargeSpline}} with maximum (\#23) and half-maximum pos. (\#24) \protect\\ 677 A strong Blue pulse (23\,Leds Blue) has been used which does not saturate the high-gain readout channel.} 678 \label{fig:reltimesinnerledblue1} 679 \end{figure} 680 681 \begin{figure}[htp] 682 \centering 683 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor30_logain.eps} 684 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor31_logain.eps} 685 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor32_logain.eps} 686 \includegraphics[width=0.45\linewidth]{RelTime_100_Extractor33_logain.eps} 687 \caption{Examples of a distributions of relative arrival times $\delta t_i$ of an inner pixel (Nr. 100) \protect\\ 688 Top: {\textit{\bf MExtractTimeAndChargeDigitalFilter}} 689 fitted to cosmics pulses over 6 slices (\#30) and 4 slices (\#31) \protect\\ 690 Bottom: {\textit{\bf MExtractTimeAndChargeDigitalFilter}} fitted to the correct blue calibration pulse over 6 slices (\#30) and 4 slices (\#31) 691 A strong Blue pulse (23\,Leds Blue) has been used which does not saturate the high-gain readout channel.} 692 \label{fig:reltimesinnerledblue2} 649 693 \end{figure} 650 694 … … 657 701 %the arrival time of the reference pixel Nr. 1. The left plot shows the result using the digital filter 658 702 % (extractor \#32), the central plot shows the result obtained with the half-maximum of the spline and the 659 %right plot the result of the sliding window with a window size of 2 FADCslices (extractor \#17). A703 %right plot the result of the sliding window with a window size of 2 slices (extractor \#17). A 660 704 %medium sized UV-pulse (10Leds UV) has been used which does not saturate the high-gain readout channel.} 661 705 %\label{fig:reltimesouter10leduv} … … 785 829 \includegraphics[width=0.95\linewidth]{TimeResVsCharge-Area-21.eps} 786 830 \caption{Reconstructed mean arrival time resolutions as a function of the extracted mean number of 787 photo-electrons for the weighted sliding window with a window size of 8 FADCslices (extractor \#21).831 photo-electrons for the weighted sliding window with a window size of 8 slices (extractor \#21). 788 832 Error bars denote the 789 833 spread (RMS) of the time resolutions over the investigated channels.
Note:
See TracChangeset
for help on using the changeset viewer.