- Timestamp:
- 06/26/07 12:25:25 (17 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Dwarf/Documents/ApplicationDFG/application.tex
r8609 r8610 192 192 \section[2]{Stand der Forschung, eigene Vorarbeiten\\State of the art, preliminary work by proposer} 193 193 194 \subsection[2.1]{Sta nd der Forschung/State of the art}194 \subsection[2.1]{State of the art (Stand der Forschung)} 195 195 196 196 {\em … … 203 203 } 204 204 205 \textbf{Introduction:} Since the termination of the HEGRA observations, 206 the succeeding experiments MAGIC and H.E.S.S.\ have impressively extended 207 the physical scope of gamma ray observations by detecting tens of 208 formerly unknown gamma ray sources and analyzing their energy spectra 209 and temporal behavior. This became possible by lowering the energy 210 threshold from 700 GeV to less than 100 GeV and increasing at the same 211 time the sensitivity by a factor of five.\\ To fully exploit the 212 discovery potential of the improved sensitivity, the discovery of new, 213 faint objects has become the major task for the new telescopes. A 214 diversity of astrophysical source types such as pulsar wind nebulae, 215 supernova remnants, microquasars, pulsars, radio galaxies, clusters of 216 galaxies, gamma ray bursts, and blazers can be studied with these 217 telescopes and limits their availability for monitoring purposes of 218 well-known bright sources.\\ There are strong reasons to make an effort 219 for the continuous monitoring of the few exceptionally bright blazars. 220 This can be achieved by operating a dedicated monitoring telescope of 221 the HEGRA-type, referred to in the following as DWARF (Dedicated 205 \paragraph{Introduction:} Since the termination of the HEGRA 206 observations, the succeeding experiments MAGIC and H.E.S.S.\ have 207 impressively extended the physical scope of gamma ray observations by 208 detecting tens of formerly unknown gamma ray sources and analyzing 209 their energy spectra and temporal behavior. This became possible by 210 lowering the energy threshold from 700 GeV to less than 100 GeV and 211 increasing at the same time the sensitivity by a factor of five. 212 213 To fully exploit the discovery potential of the improved sensitivity, 214 the discovery of new, faint objects has become the major task for the 215 new telescopes. A diversity of astrophysical source types such as 216 pulsar wind nebulae, supernova remnants, microquasars, pulsars, radio 217 galaxies, clusters of galaxies, gamma ray bursts, and blazers can be 218 studied with these telescopes and limits their availability for 219 monitoring purposes of well-known bright sources. 220 221 There are strong reasons to make an effort for the continuous 222 monitoring of the few exceptionally bright blazars. This can be 223 achieved by operating a dedicated monitoring telescope of the 224 HEGRA-type, referred to in the following as DWARF (Dedicated 222 225 multiWavelength Agn Research Facility). The reasons are outlined in 223 226 detail below. 224 227 228 \textbf{The science case:} The variability of blazars, seen across the 229 entire electromagnetic spectrum, arises from the dynamics of 230 relativistic jets and the particle acceleration going on in them. The 231 jets are launched from the vicinity of accreting supermassive black 232 holes, and theoretical models predict variability arising from the 233 interplay between jet expansion, particle injection, acceleration and 234 cooling.\\ 235 236 Long-term monitor observations of bright blazars are the key to obtain 237 a solid and complete data base for variability investigations. 238 239 {\bf Hier sollte ganz klar rauskommen warum man unbedingt ein 240 long-term monitoring IACT braucht} 241 242 {\bf Geigermde APDs?} 225 243 226 244 \subsubsection{High energy gamma and neutrino sources} 227 245 228 %============================================================ 229 %Der TeV-Photon-Astronomie ist es in den letzten Jahrzehnten gelungen, {\bf 14} 230 %extragalaktische und {\bf ???} galaktische Objekte am Himmel zu 231 %identifizieren. Hinzu kommt die Detektion von zwei diffusen Regionen in der 232 %Galaxie, die von H.E.S.S. {\bf ZITAT!} und Milagro {\bf ZITAT!!!} gesehen 233 %wurden. Die erste Quelle wurde im Jahr {\bf 19??} von {\bf HEGRA ???} 234 %beobachtet. Im Vergleich zu R\"ontgen-Messungen, die den Himmel nach Quellen 235 %abscannen k\"onnen und dementsprechend mehr als {\bf 1000 ???} Quellen 236 %katalogisiert haben {\bf ZITAT KATALOG XMM Newton/Chandra}, scheint diese 237 %Anzahl jedoch sehr niedrig. Ein Grund ist das kleine Sichtfeld, was 238 %Luft-Cherenkov Teleskope besitzen, ein weiterer, dass das TeV-Photon Signal weit entfernter Quellen 239 %($z>0.2$) vom extragalaktischen Hintegrundlicht absorbiert wird. 240 %Aufgrund der geringen Statistik an Quellen ist es zu diesem Zeitpunkt ist es notwendig, dass sich hochsensitive Instrumente 241 %prim"ar auf die Untersuchung neuer Objekte am TeV-Photon-Himmel konzentrieren 242 %und nicht auf die quantitative, permanente Beobachtung von schon bekannten 243 %Quellen. Selbst wenn eine Quelle "uber einen l"angeren Zeitraum beobachtet 244 %wurde, handelt es sich hier um einen Zeitraum von {\bf $<3$~Monaten ????}. In 245 %dieser Zeit fallen jedoch sowohl Schlechtwetter-Perioden wie auch Phasen mit 246 %starker Mond-Einstrahlung weg. Au{\ss}erdem muss beachtet werden, dass die 247 %Quelle nur eine geringe Anzahl an Stunden sichtbar am Himmel ist. 246 {\bf Aus den folgenden beiden Abschnitten kann man vielleicht einen 247 (k"urzeren) machen?} 248 248 249 249 The TeV photon astronomy succeeded in discovering {\bf 14} 250 250 extragalactic and {\bf ???} galactic objects at the sky during the past 251 251 decades. Additionally there are two diffuse regions within our galaxy 252 which have been detected by H.E.S.S.\cite{Aharonian:2006} and Milagro {\bf ZITAT!!! }253 {\it Neues Millagro Papier mit "TeV Gamma-Ray Sources from a Survex 254 of the Galactic Plane with Milagro} 4+ Quellregionen: "TeV 255 Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro" 256 Arxiv-Nr.: 0705.0707 The first source was discovered in the year 257 19{\bf??} by the {\bf HEGRA} collaboration {\it (War das nicht wer252 which have been detected by H.E.S.S.\cite{Aharonian:2006} and Milagro 253 {\bf ZITAT!!! } {\it Neues Millagro Papier mit "TeV Gamma-Ray Sources 254 from a Survex of the Galactic Plane with Milagro} 4+ Quellregionen: 255 "TeV Gamma-Ray Sources from a Survey of the Galactic Plane with 256 Milagro" Arxiv-Nr.: 0705.0707 The first source was discovered in the 257 year 19{\bf??} by the {\bf HEGRA} collaboration {\it (War das nicht wer 258 258 anders, die zu allererst den Crab sahen?...ZITAT?)}. In comparison to 259 259 x-ray measurments, which are able to scan the entire sky for sources … … 268 268 sources. Even when a source was observed over a longer period of time 269 269 this does mean {\bf less than three month ???? {\it Viel l"anger sind 270 die Quellen am St"uck doch gar nicht sichtbar, oder? Sinnvoller w"are es271 wom"oglich die wenigen Beobachtungsstunden in diesen X Monaten270 die Quellen am St"uck doch gar nicht sichtbar, oder? Sinnvoller w"are 271 es wom"oglich die wenigen Beobachtungsstunden in diesen X Monaten 272 272 hervorzuheben.}} But one has to take into account that during this time 273 273 also periods of bad weather and times with strong moon light can 274 significantly reduce observation time. Furthermore on has to consider 275 that the sources are visible in the sky for few hours only. {\it Kann 276 man das wirklich so sagen?} 277 278 %Bei den bisher beobachteten galaktischen Objekten handelt es sich um 279 %Mikroquasare und Supernova \"Uberreste, die identifizierten extragalaktischen 280 %Objekte sind Aktive Galaxien (AGN). Die Objekte sind in Tabelle~\ref{tev_objects} 281 %aufgelistet {\bf TESHIMAS VORTRAG IN MADISON}. Bei den AGN handelt es sich um 282 %13 BLLacs und um eine FR-I Galaxie, M87. 274 significantly reduce observation time. Furthermore one has to consider 275 that the sources are visible in the sky only for a few hours each night. 283 276 284 277 The so far observed galactic objects are microqasars and supernova … … 292 285 new sources (luminosity function, redshift distribution). 293 286 294 %Im Falle von hadronischer Teilchenbeschleunigung in den TeV Quellen, kann das295 %TeV Signal von $\pi^0$-Zerf"allen herr"uhren. Die neutralen Pionen kommen296 %von Delta-Resonanz Zerf"allen, die durch Proton-Photon Wechselwirkungen297 %entstehen. Ein weiterer Kanal im Zerfall der Delta-Resonanz f"uhrt zur298 %Produktion von geladenen Pionen und damit zur Produktion von Neutrinos in299 %koinzidenz mit TeV Photonen. Daher sind TeV Quellen auch immer interessant300 %f"ur Hochenergie-Neutrinoteleskope.301 302 287 In case of hadronic particle acceleration within the TeV emitters, the 303 288 TeV signal may arise from $\pi^0$-decays. These neutral pions are decay … … 309 294 telescopes. 310 295 311 %Die hohe Variabilit"at in der zeitlichen Entwicklung der AGN312 %TeV-Photon-Spektren kann bisher noch nicht schl"ussig erkl"art313 %werden314 296 The strong variability in the temporal evolution of the AGN TeV photon 315 spectra cannot be explained conclusively yet, 316 317 {\it .... blabla quantitative Untersuchungen, d.h. 318 Langzeituntersuchungen notwendig.} 319 320 {\bf SENSITIVIT\"ATSPLOT}\\321 {\bf TABELLE QUELLEN}\\ 322 {\bf AGN Physik kann man nicht ohne die unteren Paragraphen erkl"aren}\\297 spectra cannot be explained conclusively yet, {\it warum braucht man 298 f"ur die Untersuchung Langzeitbeobachtungen?} 299 300 {\bf SENSITIVIT\"ATSPLOT, Was hat der hier zu suchen?}\\ 301 {\bf TABELLE QUELLEN, Was bringt das f"ur den Antrag oder den Referee?}\\ 302 {\bf AGN Physik kann man nicht ohne die unteren Paragraphen erkl"aren, 303 Muss man die hier erkl"aren? Wir m"ussen nur deutlich machen warum wir 304 Langzeitbeobachtungen brauchen, nicht, dass wir die Physik verstehen}\\ 323 305 {\it Die Frage ist, ob man galaktische Quellen mit in die 324 306 Langzeit-Beobachtung nehmen will, dann mu"s man das einzeln 325 durchgehen. Ich bau die Argumentation gerade nur auf AGN auf:} 307 durchgehen. Ich bau die Argumentation gerade nur auf AGN auf, 308 keine galaktischen Quellen!} 326 309 327 310 \begin{itemize} 328 311 \item Welche Quellen wurden oberhalb von 1 TeV bislang beobachtet? 329 312 \item Welche Sensitivit"at braucht man? 330 \item Warum braucht man Langzeitbeobachtungen?331 \item Warum stehen diese Beobachtungen nicht auf der Speisekarte der332 gro"sen neuen Telekope?313 \item $\to$ Hier muesste doch der Abschnitt aus Ziele und ein Verweis 314 darauf reichen, das HEGRA die Quellen detektiert hat und wir besser 315 sein werden, oder? 333 316 \end{itemize} 334 317 335 318 \paragraph{Physikalische Modelle} 336 319 Erkl"are die verschiedenen Szenarien: 320 {\bf Ist das wirklich n"otig. Da sollten doch referenzen reichen... 321 das ist ja wirklich nichts aktuelles!} 337 322 \begin{itemize} 338 323 \item Inverse Compton … … 347 332 348 333 Au"serdem: Stand der Dinge, um die Variabilit"at zu erkl"aren 334 {\bf (Wichtig?) } 349 335 350 336 \paragraph{Ergebnisse von Multiwavelangth-Kampangen} … … 363 349 364 350 \paragraph{Die Photon-Neutrino-Verbindung} 365 BLABLA-\\ 366 367 \textbf{The science case:} The variability of blazars, seen across the 368 entire electromagnetic spectrum, arises from the dynamics of 369 relativistic jets and the particle acceleration going on in them. The 370 jets are launched from the vicinity of accreting supermassive black 371 holes, and theoretical models predict variability arising from the 372 interplay between jet expansion, particle injection, acceleration and 373 cooling.\\ 374 375 Long-term monitor observations of bright blazars are the key to obtain 376 a solid data base for variability investigations. 351 {\bf Steht das nicht oben schon {\em AGNs are interstng 352 Targets for Neutrino Teleskops}?} 377 353 378 354 \subsection{Eigene Vorarbeiten/Preliminary work by proposer} … … 387 363 } 388 364 389 390 \subsubsection{Quellphysik} 365 Hie sollte was stehen zu (Ich denke der Abschnitt ist wichtig um zu 366 zeigen, dass man auch leisten kann was man verspricht) 367 \begin{itemize} 368 \item Aufbau von Drive und Starguider (W"urzburg) 369 \item Erfahrungen mit Spiegeln (Dr"oge, W"urzburg) 370 \item Erfahrungen mit PMTs/HV (Dortmund) 371 \item Erfahrungen mit HPDs (W"urzburg) 372 \item Die modulare und powerfull Analyse Software (W"urzburg) 373 \item Das bestreben die MCs modular umzuschreiben (W"urzburg, Dortmund?) 374 \item Erfahrungen mit MCs: Unfolding, Athmosphaere, Corsika? (Dortmund) 375 \item Die Automatisierung der Analyse und MCs, wichtig! (W"urzburg) 376 \item Neutrino Studien, um zu zeigen, dass die angestrebten 377 Korrelationen auch wirklich von jemandem ausgewertet werden k"onnen 378 (Dortmund) 379 \item Multi-Wellenl"angen Kampagnen (Suzaku, Swift), W"urzburg/Dortmund? 380 \item Bestehende Monitoring Proposal (MAGIC) 381 \item Die SSC Modellrechnungen aus W"urzburg 382 \item LISA? (W"urzburg) 383 \end{itemize} 384 391 385 392 386 \subsubsection{Beteiligung an Experimenten} … … 403 397 group for MAGIC is modular and flexible, and can thus be used with 404 398 minor changes for the DWARF project.\\ 405 406 Ring-Methode f"ur wobble-modus aus W"urzburg?407 399 408 400 Monte Carlo production and storage will take place at Universit"at … … 438 430 telescope. \textbf{WHIPPLE wird aber noch benutzt!!!} 439 431 440 The layout of the telescope shall be carried out modular in 441 s uch a sense that components of future telescopes (mirror, camera, DAQ)442 can betested and optimized at this bodywork.432 The layout of the telescope shall be carried out modular in such a 433 sense that components of future telescopes (mirror, camera, DAQ) can be 434 tested and optimized at this bodywork. 443 435 444 436 %Wissenschaftlich sollen folgende Punkte realisiert werden: 445 Scientifically the following aims shall be realized: 446 447 \begin{itemize} 448 %\item[(1)] Langzeitbeobachtungen zeitlicher Variationen von TeV-Gamma-Ray-Quellen.\\ 449 \item [(1)]Long-term observations of temporal variations of TeV gamma437 With the upgraded instrument the following scientific aims shall be 438 realized: 439 440 \begin{enumerate} 441 \item Long-term observations of temporal variations of TeV gamma 450 442 ray sources.\\ 451 443 An understanding of this variability will deepen our knowledge about 444 452 445 \begin{itemize} 453 446 \item the composition and generation of the jets, intimately connected … … 467 460 \item Rieger; On the geometric origin of periodicity in blazar-type sources 468 461 }} 469 \end{itemize} 462 \end{itemize} 463 470 464 Long-term monitor observations of bright blazars are the key to obtain 471 465 a solid data base for variability investigations. Assuming … … 477 471 \textbf{\textit{oder ist dieser Abschnitt doch besser in 3.2. 478 472 aufgehoben?!}} 479 \item[(2)] Coincident observations with gamma telescopes in different 473 474 \item Coincident observations with gamma telescopes in different 480 475 energy ranges:\\ Flux variations will be determined and compared with 481 476 variability properties in other wavelength ranges. 482 \item[(3)] Coincident observations with the neutrino telescope 477 478 \item Coincident observations with the neutrino telescope 483 479 IceCube:\\ Hadronic emission processes and possible coincidences 484 480 between VHE-gamma and neutrino-emission will be studied. 485 \item [(5)] Furthermore, we seek to obtain know-how for the operation 481 482 \item Furthermore, we seek to obtain know-how for the operation 486 483 of future networks of Cherenkov telescopes (e.g. a monitoring array 487 484 around the globe or CTA) or telescopes at inaccessible sites. 488 \end { itemize}485 \end {enumerate} 489 486 490 487 \subsection{Arbeitsprogramm/Work schedule} … … 513 510 determined and compared with variability properties in other wavelength 514 511 ranges. 512 515 513 \item The lightcurves will be interpreted using models for the 516 514 nonthermal emission from relativistically expanding plasma jets. In … … 519 517 (Graduiertenkolleg, GK1147) shall be used. Particle acceleration is 520 518 studied with hybrid MHD and particle-in-cell methods. 519 521 520 \item {The black hole mass and accretion rate will be determined from 522 521 the emission models. Estimates of the black hole mass from emission … … 525 524 galaxy) will be compared. 526 525 \textbf{\item Rieger, Mannheim; On the central black hole mass in Mkn 501}} 527 \item \textbf{To achieve a maximal database for these studies the observation 528 schedule will be arranged together with the one for Whipple. (Letter of 529 support?) ($\rightarrow$ collaboration with Veritas)} 526 527 \item \textbf{To achieve a maximal database for these studies the 528 observation schedule will be arranged together with the one for 529 Whipple. (Letter of support?) ($\rightarrow$ collaboration with 530 Veritas)} 531 530 532 \item When flaring states will be discovered during the monitor 531 533 program, MAGIC will issue a Target of Opportunity observation to obtain … … 533 535 Target-of-Opportunity (ToO) proposals to H.E.S.S.\ and Veritas are in 534 536 preparation. 535 \item 536 \textbf{Additionally DWARF observations will be combined with 537 simultaneous MAGIC observations via a software coincidence trigger. 538 Recent simulations for CTA ref{MAGIC-CTA-Simulationen} show that by 539 this kind of observation the energy range of the larger telescope can 540 hugely be stretched to higher energies. This in turn leads to the so 541 far unique possibility to cover an energy range of tens of GeV to 542 several tens of TeV at the same time leading to the possibility of 543 studying inverse compton peaks as well as absorption due to EBL 544 simultaneously.} 537 538 \item DWARF observations will be combined with simultaneous MAGIC 539 observations. By this kind of observation the energy range of the MAGIC 540 telescope can be stretched to higher energies. This in turn leads to 541 the so far unique possibility to cover an energy range of tens of GeV 542 to several tens of TeV at the same time allowing the study of the 543 inverse compton peaks as well as absorption due to EBL simultaneously. 544 By a software coincidence trigger the sensitivity in the overlapping 545 energy region might be improved further. 545 546 546 547 \item Correlating the arrival times of neutrinos detected by the … … 550 551 sources. The investigation proposed here is complete for both, neutrino 551 552 and gamma observations, and can therefore lead to conclusive results. 553 552 554 \item The diffusive fluxes of escaping UHE cosmic rays obtained from 553 555 AUGER or flux limits of neutrinos from IceCube, respectively, will be 554 556 used to constrain models of UHE cosmic ray origin and large-scale 555 557 magnetic fields. 558 556 559 \item Multi-frequency observations together with the Mets"ahovi Radio 557 560 Observatory and the optical Tuorla Observatory are planned (Letters of … … 559 562 and GLAST results, when available. X-ray monitoring using the SWIFT and 560 563 Suzaku facilities will be proposed. 564 561 565 \item The most ambitious scientific goal of this proposal is the search 562 566 for signatures of binary black hole systems from orbital modulation of … … 1252 1256 %\section{References} 1253 1257 1254 \vskip0.3cm1255 1256 1258 %\bibliographystyle{alpha} 1257 1259 \newpage
Note:
See TracChangeset
for help on using the changeset viewer.