Ignore:
Timestamp:
06/26/07 12:25:25 (17 years ago)
Author:
tbretz
Message:
*** empty log message ***
File:
1 edited

Legend:

Unmodified
Added
Removed
  • trunk/Dwarf/Documents/ApplicationDFG/application.tex

    r8609 r8610  
    192192\section[2]{Stand der Forschung, eigene Vorarbeiten\\State of the art, preliminary work by proposer}
    193193
    194 \subsection[2.1]{Stand der Forschung/State of the art}
     194\subsection[2.1]{State of the art (Stand der Forschung)}
    195195
    196196{\em
     
    203203}
    204204
    205 \textbf{Introduction:} Since the termination of the HEGRA observations,
    206 the succeeding experiments MAGIC and H.E.S.S.\ have impressively extended
    207 the physical scope of gamma ray observations by detecting tens of
    208 formerly unknown gamma ray sources and analyzing their energy spectra
    209 and temporal behavior. This became possible by lowering the energy
    210 threshold from 700 GeV to less than 100 GeV and increasing at the same
    211 time the sensitivity by a factor of five.\\ To fully exploit the
    212 discovery potential of the improved sensitivity, the discovery of new,
    213 faint objects has become the major task for the new telescopes. A
    214 diversity of astrophysical source types such as pulsar wind nebulae,
    215 supernova remnants, microquasars, pulsars, radio galaxies, clusters of
    216 galaxies, gamma ray bursts, and blazers can be studied with these
    217 telescopes and limits their availability for monitoring purposes of
    218 well-known bright sources.\\ There are strong reasons to make an effort
    219 for the continuous monitoring of the few exceptionally bright blazars.
    220 This can be achieved by operating a dedicated monitoring telescope of
    221 the HEGRA-type, referred to in the following as DWARF (Dedicated
     205\paragraph{Introduction:} Since the termination of the HEGRA
     206observations, the succeeding experiments MAGIC and H.E.S.S.\ have
     207impressively extended the physical scope of gamma ray observations by
     208detecting tens of formerly unknown gamma ray sources and analyzing
     209their energy spectra and temporal behavior. This became possible by
     210lowering the energy threshold from 700 GeV to less than 100 GeV and
     211increasing at the same time the sensitivity by a factor of five.
     212
     213To fully exploit the discovery potential of the improved sensitivity,
     214the discovery of new, faint objects has become the major task for the
     215new telescopes. A diversity of astrophysical source types such as
     216pulsar wind nebulae, supernova remnants, microquasars, pulsars, radio
     217galaxies, clusters of galaxies, gamma ray bursts, and blazers can be
     218studied with these telescopes and limits their availability for
     219monitoring purposes of well-known bright sources.
     220
     221There are strong reasons to make an effort for the continuous
     222monitoring of the few exceptionally bright blazars. This can be
     223achieved by operating a dedicated monitoring telescope of the
     224HEGRA-type, referred to in the following as DWARF (Dedicated
    222225multiWavelength Agn Research Facility). The reasons are outlined in
    223226detail below.
    224227
     228\textbf{The science case:} The variability of blazars, seen across the
     229entire electromagnetic spectrum, arises from the dynamics of
     230relativistic jets and the particle acceleration going on in them. The
     231jets are launched from the vicinity of accreting supermassive black
     232holes, and theoretical models predict variability arising from the
     233interplay between jet expansion, particle injection, acceleration and
     234cooling.\\
     235
     236Long-term monitor observations of bright blazars are the key to obtain
     237a solid and complete data base for variability investigations.
     238
     239{\bf Hier sollte ganz klar rauskommen warum man unbedingt ein
     240long-term monitoring IACT braucht}
     241
     242{\bf Geigermde APDs?}
    225243
    226244\subsubsection{High energy gamma and neutrino sources}
    227245
    228 %============================================================
    229 %Der TeV-Photon-Astronomie ist es in den letzten Jahrzehnten gelungen, {\bf 14}
    230 %extragalaktische und {\bf ???} galaktische Objekte am Himmel zu
    231 %identifizieren. Hinzu kommt die Detektion von zwei diffusen Regionen in der
    232 %Galaxie, die von H.E.S.S. {\bf ZITAT!} und Milagro {\bf ZITAT!!!} gesehen
    233 %wurden. Die erste Quelle wurde im Jahr {\bf 19??} von {\bf HEGRA ???}
    234 %beobachtet. Im Vergleich zu R\"ontgen-Messungen, die den Himmel nach Quellen
    235 %abscannen k\"onnen und dementsprechend mehr als {\bf 1000 ???} Quellen
    236 %katalogisiert haben {\bf ZITAT KATALOG XMM Newton/Chandra}, scheint diese
    237 %Anzahl jedoch sehr niedrig. Ein Grund ist das kleine Sichtfeld, was
    238 %Luft-Cherenkov Teleskope besitzen, ein weiterer, dass das TeV-Photon Signal weit entfernter Quellen
    239 %($z>0.2$) vom extragalaktischen Hintegrundlicht absorbiert wird. 
    240 %Aufgrund der geringen Statistik an Quellen ist es zu diesem Zeitpunkt ist es notwendig, dass sich hochsensitive Instrumente
    241 %prim"ar auf die Untersuchung neuer Objekte am TeV-Photon-Himmel konzentrieren
    242 %und nicht auf die quantitative, permanente Beobachtung von schon bekannten
    243 %Quellen. Selbst wenn eine Quelle "uber einen l"angeren Zeitraum beobachtet
    244 %wurde, handelt es sich hier um einen Zeitraum von {\bf $<3$~Monaten ????}. In
    245 %dieser Zeit fallen jedoch sowohl Schlechtwetter-Perioden wie auch Phasen mit
    246 %starker Mond-Einstrahlung weg. Au{\ss}erdem muss beachtet werden, dass die
    247 %Quelle nur eine geringe Anzahl an Stunden sichtbar am Himmel ist. 
     246{\bf Aus den folgenden beiden Abschnitten kann man vielleicht einen
     247(k"urzeren) machen?}
    248248
    249249The TeV photon astronomy succeeded in discovering {\bf 14}
    250250extragalactic and {\bf ???} galactic objects at the sky during the past
    251251decades. Additionally there are two diffuse regions within our galaxy
    252 which have been detected by H.E.S.S.\cite{Aharonian:2006} and Milagro {\bf ZITAT!!! }
    253  {\it Neues Millagro Papier mit "TeV Gamma-Ray Sources from a Survex
    254  of the Galactic Plane with Milagro} 4+ Quellregionen: "TeV
    255 Gamma-Ray Sources from a Survey of the Galactic  Plane with Milagro"
    256 Arxiv-Nr.: 0705.0707 The first source was discovered in the year
    257 19{\bf??} by the {\bf HEGRA} collaboration {\it (War das nicht wer
     252which have been detected by H.E.S.S.\cite{Aharonian:2006} and Milagro
     253{\bf ZITAT!!! } {\it Neues Millagro Papier mit "TeV Gamma-Ray Sources
     254from a Survex of the Galactic Plane with Milagro} 4+ Quellregionen:
     255"TeV Gamma-Ray Sources from a Survey of the Galactic  Plane with
     256Milagro" Arxiv-Nr.: 0705.0707 The first source was discovered in the
     257year 19{\bf??} by the {\bf HEGRA} collaboration {\it (War das nicht wer
    258258anders, die zu allererst den Crab sahen?...ZITAT?)}. In comparison to
    259259x-ray measurments, which are able to scan the entire sky for sources
     
    268268sources. Even when a source was observed over a longer period of time
    269269this does mean {\bf  less than three month ???? {\it Viel l"anger sind
    270 die Quellen am St"uck doch gar nicht sichtbar, oder? Sinnvoller w"are es
    271 wom"oglich die wenigen Beobachtungsstunden in diesen X Monaten
     270die Quellen am St"uck doch gar nicht sichtbar, oder? Sinnvoller w"are
     271es wom"oglich die wenigen Beobachtungsstunden in diesen X Monaten
    272272hervorzuheben.}} But one has to take into account that during this time
    273273also periods of bad weather and times with strong moon light can
    274 significantly reduce  observation time. Furthermore on has to consider
    275 that the sources are visible in the sky for few hours only. {\it Kann
    276 man das wirklich so sagen?}
    277 
    278 %Bei den bisher beobachteten galaktischen Objekten handelt es sich um
    279 %Mikroquasare und Supernova \"Uberreste, die identifizierten extragalaktischen
    280 %Objekte sind Aktive Galaxien (AGN). Die Objekte sind in Tabelle~\ref{tev_objects}
    281 %aufgelistet {\bf TESHIMAS VORTRAG IN MADISON}. Bei den AGN handelt es sich um
    282 %13 BLLacs und um eine FR-I Galaxie, M87.
     274significantly reduce  observation time. Furthermore one has to consider
     275that the sources are visible in the sky only for a few hours each night.
    283276
    284277The so far observed galactic objects are microqasars and supernova
     
    292285new sources (luminosity function, redshift distribution).
    293286
    294 %Im Falle von hadronischer Teilchenbeschleunigung in den TeV Quellen, kann das
    295 %TeV Signal von $\pi^0$-Zerf"allen herr"uhren. Die neutralen Pionen kommen
    296 %von Delta-Resonanz Zerf"allen, die durch Proton-Photon Wechselwirkungen
    297 %entstehen. Ein weiterer Kanal im Zerfall der Delta-Resonanz f"uhrt zur
    298 %Produktion von geladenen Pionen und damit zur Produktion von Neutrinos in
    299 %koinzidenz mit TeV Photonen. Daher sind TeV Quellen auch immer interessant
    300 %f"ur Hochenergie-Neutrinoteleskope.
    301 
    302287In case of hadronic particle acceleration within the TeV emitters, the
    303288TeV signal may arise from $\pi^0$-decays. These neutral pions are decay
     
    309294telescopes.
    310295
    311 %Die hohe Variabilit"at in der zeitlichen Entwicklung der AGN
    312 %TeV-Photon-Spektren kann bisher noch nicht schl"ussig erkl"art
    313 %werden
    314296The strong variability in the temporal evolution of the AGN TeV photon
    315 spectra cannot be explained conclusively yet,
    316 
    317 {\it .... blabla quantitative Untersuchungen, d.h.
    318 Langzeituntersuchungen notwendig.}
    319 
    320 {\bf SENSITIVIT\"ATSPLOT}\\
    321 {\bf TABELLE QUELLEN}\\
    322 {\bf AGN Physik kann man nicht ohne die unteren Paragraphen erkl"aren}\\
     297spectra cannot be explained conclusively yet, {\it warum braucht man
     298f"ur die Untersuchung Langzeitbeobachtungen?}
     299
     300{\bf SENSITIVIT\"ATSPLOT, Was hat der hier zu suchen?}\\
     301{\bf TABELLE QUELLEN, Was bringt das f"ur den Antrag oder den Referee?}\\
     302{\bf AGN Physik kann man nicht ohne die unteren Paragraphen erkl"aren,
     303Muss man die hier erkl"aren? Wir m"ussen nur deutlich machen warum wir
     304Langzeitbeobachtungen brauchen, nicht, dass wir die Physik verstehen}\\
    323305{\it Die Frage ist, ob man galaktische Quellen mit in die
    324306Langzeit-Beobachtung nehmen will, dann mu"s man das einzeln
    325 durchgehen. Ich bau die Argumentation gerade nur auf AGN auf:}
     307durchgehen. Ich bau die Argumentation gerade nur auf AGN auf,
     308keine galaktischen Quellen!}
    326309
    327310\begin{itemize}
    328311\item Welche Quellen wurden oberhalb von 1 TeV bislang beobachtet?
    329312\item Welche Sensitivit"at braucht man?
    330 \item Warum braucht man Langzeitbeobachtungen?
    331 \item Warum stehen diese Beobachtungen nicht auf der Speisekarte der
    332 gro"sen neuen Telekope?
     313\item $\to$ Hier muesste doch der Abschnitt aus Ziele und ein Verweis
     314darauf reichen, das HEGRA die Quellen detektiert hat und wir besser
     315sein werden, oder?
    333316\end{itemize}
    334317
    335318\paragraph{Physikalische Modelle}
    336319Erkl"are die verschiedenen Szenarien:
     320{\bf Ist das wirklich n"otig. Da sollten doch referenzen reichen...
     321das ist ja wirklich nichts aktuelles!}
    337322\begin{itemize}
    338323\item Inverse Compton
     
    347332
    348333Au"serdem: Stand der Dinge, um die Variabilit"at zu erkl"aren
     334{\bf (Wichtig?) }
    349335
    350336\paragraph{Ergebnisse von Multiwavelangth-Kampangen}
     
    363349
    364350\paragraph{Die Photon-Neutrino-Verbindung}
    365 BLABLA-\\
    366 
    367 \textbf{The science case:} The variability of blazars, seen across the
    368 entire electromagnetic spectrum, arises from the dynamics of
    369 relativistic jets and the particle acceleration going on in them. The
    370 jets are launched from the vicinity of accreting supermassive black
    371 holes, and theoretical models predict variability arising from the
    372 interplay between jet expansion, particle injection, acceleration and
    373 cooling.\\
    374 
    375 Long-term monitor observations of bright blazars are the key to obtain
    376 a solid data base for variability investigations.
     351{\bf Steht das nicht oben schon {\em AGNs are interstng
     352Targets for Neutrino Teleskops}?}
    377353
    378354\subsection{Eigene Vorarbeiten/Preliminary work by proposer}
     
    387363}
    388364
    389 
    390 \subsubsection{Quellphysik}
     365Hie sollte was stehen zu (Ich denke der Abschnitt ist wichtig um zu
     366zeigen, dass man auch leisten kann was man verspricht)
     367\begin{itemize}
     368\item Aufbau von Drive und Starguider (W"urzburg)
     369\item Erfahrungen mit Spiegeln (Dr"oge, W"urzburg)
     370\item Erfahrungen mit PMTs/HV (Dortmund)
     371\item Erfahrungen mit HPDs (W"urzburg)
     372\item Die modulare und powerfull Analyse Software (W"urzburg)
     373\item Das bestreben die MCs modular umzuschreiben (W"urzburg, Dortmund?)
     374\item Erfahrungen mit MCs: Unfolding, Athmosphaere, Corsika? (Dortmund)
     375\item Die Automatisierung der Analyse und MCs, wichtig! (W"urzburg)
     376\item Neutrino Studien, um zu zeigen, dass die angestrebten
     377Korrelationen auch wirklich von jemandem ausgewertet werden k"onnen
     378(Dortmund)
     379\item Multi-Wellenl"angen Kampagnen (Suzaku, Swift), W"urzburg/Dortmund?
     380\item Bestehende Monitoring Proposal (MAGIC)
     381\item Die SSC Modellrechnungen aus W"urzburg
     382\item LISA? (W"urzburg)
     383\end{itemize}
     384
    391385
    392386\subsubsection{Beteiligung an Experimenten}
     
    403397group for MAGIC is modular and flexible, and can thus be used with
    404398minor changes for the DWARF project.\\
    405 
    406 Ring-Methode f"ur wobble-modus aus W"urzburg?
    407399
    408400Monte Carlo production and storage will take place at Universit"at
     
    438430telescope. \textbf{WHIPPLE wird aber noch benutzt!!!}
    439431
    440 The layout of the telescope shall be carried out modular in
    441 such a sense that components of future telescopes (mirror, camera, DAQ)
    442 can be tested and optimized at this bodywork.
     432The layout of the telescope shall be carried out modular in such a
     433sense that components of future telescopes (mirror, camera, DAQ) can be
     434tested and optimized at this bodywork.
    443435
    444436%Wissenschaftlich sollen folgende Punkte realisiert werden:
    445 Scientifically the following aims shall be realized:
    446 
    447 \begin{itemize}
    448 %\item[(1)] Langzeitbeobachtungen zeitlicher Variationen von TeV-Gamma-Ray-Quellen.\\
    449 \item[(1)] Long-term observations of temporal variations of TeV gamma
     437With the upgraded instrument the following scientific aims shall be
     438realized:
     439
     440\begin{enumerate}
     441\item Long-term observations of temporal variations of TeV gamma
    450442ray sources.\\
    451443An understanding of this variability will deepen our knowledge about
     444
    452445  \begin{itemize}
    453446  \item the composition and generation of the jets, intimately connected
     
    467460\item Rieger; On the geometric origin of periodicity in blazar-type sources
    468461}}
    469   \end{itemize}
     462  \end{itemize}
     463
    470464Long-term monitor observations of bright blazars are the key to obtain
    471465a solid data base for variability investigations. Assuming
     
    477471\textbf{\textit{oder ist dieser Abschnitt doch besser in 3.2.
    478472aufgehoben?!}}
    479 \item[(2)] Coincident observations with gamma telescopes in different
     473
     474\item Coincident observations with gamma telescopes in different
    480475energy ranges:\\ Flux variations will be determined and compared with
    481476variability properties in other wavelength ranges.
    482 \item[(3)] Coincident observations with the neutrino telescope
     477
     478\item Coincident observations with the neutrino telescope
    483479IceCube:\\ Hadronic emission processes and possible coincidences
    484480between VHE-gamma and neutrino-emission will be studied.
    485 \item [(5)] Furthermore, we seek to obtain know-how for the operation
     481
     482\item Furthermore, we seek to obtain know-how for the operation
    486483of future networks of Cherenkov telescopes (e.g. a monitoring array
    487484around the globe or CTA) or telescopes at inaccessible sites.
    488 \end {itemize}
     485\end {enumerate}
    489486
    490487\subsection{Arbeitsprogramm/Work schedule}
     
    513510determined and compared with variability properties in other wavelength
    514511ranges.
     512
    515513\item The lightcurves will be interpreted using models for the
    516514nonthermal emission from relativistically expanding plasma jets. In
     
    519517(Graduiertenkolleg, GK1147) shall be used. Particle acceleration is
    520518studied with hybrid MHD and particle-in-cell methods.
     519
    521520\item {The black hole mass and accretion rate will be determined from
    522521the emission models. Estimates of the black hole mass from emission
     
    525524galaxy) will be compared.
    526525\textbf{\item Rieger, Mannheim; On the central black hole mass in Mkn 501}}
    527 \item \textbf{To achieve a maximal database for these studies the observation
    528 schedule will be arranged together with the one for Whipple. (Letter of
    529 support?) ($\rightarrow$ collaboration with Veritas)}
     526
     527\item \textbf{To achieve a maximal database for these studies the
     528observation  schedule will be arranged together with the one for
     529Whipple. (Letter of  support?) ($\rightarrow$ collaboration with
     530Veritas)}
     531
    530532\item When flaring states will be discovered during the monitor
    531533program, MAGIC will issue a Target of Opportunity observation to obtain
     
    533535Target-of-Opportunity (ToO) proposals to H.E.S.S.\ and Veritas are in
    534536preparation.
    535 \item
    536 \textbf{Additionally DWARF observations will be combined with
    537 simultaneous MAGIC observations via a software coincidence trigger.
    538 Recent simulations for CTA ref{MAGIC-CTA-Simulationen} show that by
    539 this kind of observation the energy range of the larger telescope can
    540 hugely be stretched to higher energies. This in turn leads to the so
    541 far unique possibility to cover an energy range of tens of GeV to
    542 several tens of TeV at the same time leading to the possibility of
    543 studying inverse compton peaks as well as absorption due to EBL
    544 simultaneously.}
     537
     538\item DWARF observations will be combined with simultaneous MAGIC
     539observations. By this kind of observation the energy range of the MAGIC
     540telescope can be stretched to higher energies. This in turn leads to
     541the so far unique possibility to cover an energy range of tens of GeV
     542to several tens of TeV at the same time allowing the study of the
     543inverse compton peaks as well as absorption due to EBL simultaneously.
     544By a software coincidence trigger the sensitivity in the overlapping
     545energy region might be improved further.
    545546
    546547\item Correlating the arrival times of neutrinos detected by the
     
    550551sources. The investigation proposed here is complete for both, neutrino
    551552and gamma observations, and can therefore lead to conclusive results.
     553
    552554\item The diffusive fluxes of escaping UHE cosmic rays obtained from
    553555AUGER or flux limits of neutrinos from IceCube, respectively, will be
    554556used to constrain models of UHE cosmic ray origin and large-scale
    555557magnetic fields.
     558
    556559\item Multi-frequency observations together with the Mets"ahovi Radio
    557560Observatory and the optical Tuorla Observatory are planned (Letters of
     
    559562and GLAST results, when available. X-ray monitoring using the SWIFT and
    560563Suzaku facilities will be proposed.
     564
    561565\item The most ambitious scientific goal of this proposal is the search
    562566for signatures of binary black hole systems from orbital modulation of
     
    12521256%\section{References}
    12531257
    1254 \vskip0.3cm
    1255 
    12561258%\bibliographystyle{alpha}
    12571259\newpage
Note: See TracChangeset for help on using the changeset viewer.