Ignore:
Timestamp:
11/29/07 20:58:33 (17 years ago)
Author:
tbretz
Message:
*** empty log message ***
Location:
trunk/Dwarf/Documents/ApplicationDFG
Files:
2 edited

Legend:

Unmodified
Added
Removed
  • trunk/Dwarf/Documents/ApplicationDFG/application.bib

    r8613 r8771  
    10361036
    10371037@INPROCEEDINGS{Riegel:2005icrc2,
    1038    author = {{Riegel}, B. and Bretz, T. and Dorner, D. and Wagner, R.~M. and others},
     1038   author = {{Riegel}, B. and Bretz, T. and Dorner, D. and Wagner, R.~M.},
    10391039    title = {A tracking monitor for the {MAGIC} telescope},
    10401040booktitle = {$29^{th}$ International Cosmic Ray Conference},
     
    26252625  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
    26262626}
     2627
     2628@ARTICLE{Blandford,
     2629   author = {{Blandford}, R.~D. and {K\"onigl}, A.},
     2630    title = {Relativistic jets as compact radio sources},
     2631  journal = {\apj},
     2632     year = 1979,
     2633    month = aug,
     2634   volume = 232,
     2635    pages = {34-48},
     2636      doi = {10.1086/157262},
     2637   adsurl = {http://cdsads.u-strasbg.fr/abs/1979ApJ...232...34B},
     2638  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2639}
     2640
     2641@ARTICLE{Dermer,
     2642   author = {{Dermer}, C.~D. and {Schlickeiser}, R. and {Mastichiadis}, A.},
     2643    title = {High-energy gamma radiation from extragalactic radio sources},
     2644  journal = {\aap},
     2645     year = 1992,
     2646    month = mar,
     2647   volume = 256,
     2648    pages = {L27-L30},
     2649   adsurl = {http://cdsads.u-strasbg.fr/abs/1992A%26A...256L..27D},
     2650  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2651}
     2652
     2653@ARTICLE{Begelman,
     2654   author = {{Begelman}, M.~C. and {Fabian}, A.~C. and {Rees}, M.~J.},
     2655    title = "{Implications of very rapid TeV variability in blazars}",
     2656  journal = {ArXiv e-prints},
     2657   eprint = {0709.0540},
     2658     year = 2007,
     2659    month = sep,
     2660   volume = 709,
     2661   adsurl = {http://cdsads.u-strasbg.fr/abs/2007arXiv0709.0540B},
     2662  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2663}
     2664
     2665@ARTICLE{Meszaros,
     2666   author = {{Meszaros}, P. and {Rees}, M.~J.},
     2667    title = {Gamma-Ray Bursts: Multiwaveband Spectral Predictions for Blast Wave Models},
     2668  journal = {\apjl},
     2669   eprint = {arXiv:astro-ph/9309011},
     2670     year = 1993,
     2671    month = dec,
     2672   volume = 418,
     2673    pages = {L59+},
     2674      doi = {10.1086/187116},
     2675   adsurl = {http://cdsads.u-strasbg.fr/abs/1993ApJ...418L..59M},
     2676  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2677}
     2678
     2679@ARTICLE{Rachen,
     2680   author = {{Rachen}, J.~P. and {Biermann}, P.~L.},
     2681    title = {{E}xtragalactic {U}ltra-{H}igh {E}nergy {C}osmic-{R}ays - {P}art {O}ne - {C}ontribution from {H}ot {S}pots in {Fr-II} {R}adio {G}alaxies},
     2682  journal = {\aap},
     2683   eprint = {arXiv:astro-ph/9301010},
     2684     year = 1993,
     2685    month = may,
     2686   volume = 272,
     2687    pages = {161-+},
     2688   adsurl = {http://cdsads.u-strasbg.fr/abs/1993A%26A...272..161R},
     2689  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2690}
     2691
     2692@INPROCEEDINGS{Mannheim:1999,
     2693   author = {{Mannheim}, K.},
     2694    title = {Frontiers in High-Energy Astroparticle Physics},
     2695booktitle = {Reviews in Modern Astronomy},
     2696     year = 1999,
     2697   series = {Reviews in Modern Astronomy},
     2698   volume = 12,
     2699   editor = {{Schielicke}, R.~E.},
     2700    pages = {167-+},
     2701   adsurl = {http://cdsads.u-strasbg.fr/abs/1999RvMA...12..167M},
     2702  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2703}
     2704
     2705@ARTICLE{Blazejowski,
     2706   author = {{B{\l}a{\.z}ejowski}, M. and others},
     2707    title = "{A Multiwavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution}",
     2708  journal = {\apj},
     2709   eprint = {arXiv:astro-ph/0505325},
     2710     year = 2005,
     2711    month = sep,
     2712   volume = 630,
     2713    pages = {130-141},
     2714      doi = {10.1086/431925},
     2715   adsurl = {http://cdsads.u-strasbg.fr/abs/2005ApJ...630..130B},
     2716  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2717}
     2718
     2719@ARTICLE{Rieger:2007,
     2720   author = {{Rieger}, F.~M.},
     2721    title = {Supermassive binary black holes among cosmic gamma-ray sources},
     2722  journal = {\apss},
     2723   eprint = {arXiv:astro-ph/0611224},
     2724     year = 2007,
     2725    month = jun,
     2726   volume = 309,
     2727    pages = {271-275},
     2728      doi = {10.1007/s10509-007-9467-y},
     2729   adsurl = {http://cdsads.u-strasbg.fr/abs/2007Ap%26SS.309..271R},
     2730  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2731}
     2732
     2733@INPROCEEDINGS{Kranich,
     2734   author = {{Kranich}, D.},
     2735    title = {Evidence for a {QPO} structure in the {TeV} and X-ray light curve during the 1997 high state {$\gamma$} emission of {Mkn}\,501},
     2736booktitle = {International Cosmic Ray Conference},
     2737     year = 1999,
     2738   series = {International Cosmic Ray Conference},
     2739   volume = 3,
     2740    month = aug,
     2741    pages = {358-+},
     2742   adsurl = {http://cdsads.u-strasbg.fr/abs/1999ICRC....3..358K},
     2743  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2744}
     2745
     2746@ARTICLE{Osone,
     2747   author = {{Osone}, S.},
     2748    title = "{Study of 23 day periodicity of Blazar Mkn501 in 1997}",
     2749  journal = {Astroparticle Physics},
     2750   eprint = {arXiv:astro-ph/0506328},
     2751     year = 2006,
     2752    month = oct,
     2753   volume = 26,
     2754    pages = {209-218},
     2755      doi = {10.1016/j.astropartphys.2006.06.004},
     2756   adsurl = {http://cdsads.u-strasbg.fr/abs/2006APh....26..209O},
     2757  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2758}
     2759
     2760@ARTICLE{Rieger:2003,
     2761   author = {{Rieger}, F.~M. and {Mannheim}, K.},
     2762    title = {On the central black hole mass in Mkn 501},
     2763  journal = {\aap},
     2764   eprint = {arXiv:astro-ph/0210326},
     2765     year = 2003,
     2766    month = jan,
     2767   volume = 397,
     2768    pages = {121-125},
     2769      doi = {10.1051/0004-6361:20021482},
     2770   adsurl = {http://cdsads.u-strasbg.fr/abs/2003A%26A...397..121R},
     2771  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2772}
     2773
     2774@ARTICLE{Hong,
     2775   author = {{Hong}, X.~Y. and others},
     2776    title = "{A relativistic helical jet in the {$\gamma$}-ray AGN 1156+295}",
     2777  journal = {\aap},
     2778   eprint = {arXiv:astro-ph/0401627},
     2779     year = 2004,
     2780    month = apr,
     2781   volume = 417,
     2782    pages = {887-904},
     2783      doi = {10.1051/0004-6361:20031784},
     2784   adsurl = {http://cdsads.u-strasbg.fr/abs/2004A%26A...417..887H},
     2785  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2786}
     2787
     2788@ARTICLE{Aharonian:2006,
     2789   author = {{Aharonian}, F. and others},
     2790    title = "{The H.E.S.S.\ Survey of the Inner Galaxy in Very High Energy Gamma Rays}",
     2791  journal = {\apj},
     2792     year = 2006,
     2793    month = jan,
     2794   volume = 636,
     2795    pages = {777-797},
     2796      doi = {10.1086/498013},
     2797   adsurl = {http://cdsads.u-strasbg.fr/abs/2006ApJ...636..777A},
     2798  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2799}
     2800
     2801@MASTERSTHESIS{Meyer:Diploma,
     2802  author = {Meyer, M.},
     2803  title  = {{K}alibrierung des {MAGIC}-{T}eleskops mit {M}yonen},
     2804  school = {Bayerische Julius-Maximilians-Universit{\"a}t W{\"u}rzburg},
     2805  year   = {2004}
     2806}
     2807
     2808@INPROCEEDINGS{Bretz:2003drive,
     2809   author = {Bretz, T. and Dorner, D. and Wagner, R. M.},
     2810    title = "{The tracking system of the MAGIC telescope}",
     2811booktitle = {$28^{th}$ International Cosmic Ray Conference},
     2812     year = 2003,
     2813}
     2814
     2815@MASTERSTHESIS{Riegel:Diploma,
     2816  author = {Riegel, B.},
     2817  title  = {{S}ystematische {U}ntersuchung der {B}ildparameter f\"ur das {MAGIC}-{T}eleskop},
     2818  school = {Bayerische Julius-Maximilians-Universit{\"a}t W{\"u}rzburg},
     2819  year   = {2005}
     2820}
     2821
     2822@INPROCEEDINGS{Bretz:2003icrc,
     2823   author = {{Bretz}, T.},
     2824    title = {The {MAGIC} {A}nalysis and {R}econstruction {S}oftware},
     2825booktitle = {$28^{th}$ International Cosmic Ray Conference},
     2826     year = 2003,
     2827    month = Aug
     2828}
     2829
     2830@INPROCEEDINGS{Bretz:2004gamma,
     2831   author = {{Bretz}, T.},
     2832    title = {{MARS} - {R}oadmap to a standard analysis},
     2833booktitle = {$2^{nd}$ International Symposium on High Energy Gamma-Ray Astronomy},
     2834     year = 2004,
     2835    month = Jul
     2836}
     2837
     2838@ARTICLE{Paneque:2004,
     2839   author = {{Paneque}, D. and {Gebauer}, H.~J. and {Lorenz}, E. and {Mirzoyan}, R.
     2840},
     2841    title = "{A method to enhance the sensitivity of photomultipliers for Air Cherenkov Telescopes by applying a lacquer that scatters light}",
     2842  journal = {Nuclear Instruments and Methods in Physics Research A},
     2843     year = 2004,
     2844    month = feb,
     2845   volume = 518,
     2846    pages = {619-621},
     2847      doi = {10.1016/j.nima.2003.11.101},
     2848   adsurl = {http://cdsads.u-strasbg.fr/abs/2004NIMPA.518..619P},
     2849  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2850}
     2851
     2852@ARTICLE{Milagro:2007,
     2853   author = {{Abdo}, A.~A. and others},
     2854    title = "{TeV Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro}",
     2855  journal = {ArXiv e-prints},
     2856   eprint = {0705.0707},
     2857     year = 2007,
     2858    month = may,
     2859   volume = 705,
     2860   adsurl = {http://cdsads.u-strasbg.fr/abs/2007arXiv0705.0707A},
     2861  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2862}
     2863
     2864@ARTICLE{Rieger:2000,
     2865   author = {{Rieger}, F.~M. and {Mannheim}, K.},
     2866    title = "{Implications of a possible 23 day periodicity for binary black hole models in Mkn 501}",
     2867  journal = {\aap},
     2868   eprint = {arXiv:astro-ph/0005478},
     2869     year = 2000,
     2870    month = jul,
     2871   volume = 359,
     2872    pages = {948-952},
     2873   adsurl = {http://cdsads.u-strasbg.fr/abs/2000A%26A...359..948R},
     2874  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2875}
     2876
     2877@INPROCEEDINGS{Rieger:2001,
     2878   author = {{Rieger}, F.~M. and {Mannheim}, K.},
     2879    title = "{A Possible Black Hole Binary in Mkn 501}",
     2880booktitle = {American Institute of Physics Conference Series},
     2881     year = 2001,
     2882   series = {American Institute of Physics Conference Series},
     2883   volume = 558,
     2884   editor = {{Aharonian}, F.~A. and {V{\"o}lk}, H.~J.},
     2885    pages = {716-+},
     2886   adsurl = {http://cdsads.u-strasbg.fr/abs/2001AIPC..558..716R},
     2887  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2888}
     2889
     2890@ARTICLE{Rieger:2003,
     2891   author = {{Rieger}, F.~M. and {Mannheim}, K.},
     2892    title = "{On the central black hole mass in Mkn 501}",
     2893  journal = {\aap},
     2894   eprint = {arXiv:astro-ph/0210326},
     2895     year = 2003,
     2896    month = jan,
     2897   volume = 397,
     2898    pages = {121-125},
     2899      doi = {10.1051/0004-6361:20021482},
     2900   adsurl = {http://cdsads.u-strasbg.fr/abs/2003A%26A...397..121R},
     2901  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2902}
     2903
     2904@ARTICLE{Aharonian:2007pks,
     2905author = {{Aharonian}, F. and others},
     2906title = "{An Exceptional Very High Energy Gamma-Ray Flare of PKS 2155-304}",
     2907journal = {\apjl},
     2908eprint = {arXiv:0706.0797},
     2909year = 2007,
     2910month = aug,
     2911volume = 664,
     2912pages = {L71-L74},
     2913doi = {10.1086/520635},
     2914adsurl = {http://cdsads.u-strasbg.fr/abs/2007ApJ...664L..71A},
     2915adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2916}
     2917
     2918@MASTERSTHESIS{Haffke:Dipl,
     2919  author = {Haffke, M.},
     2920  title  = "{Berechnung und Implementierung neuer Atmosph\"arenmodelle in die MAGIC-Monte-Carlo-Kette}",
     2921  school = {Universit{\"a}t Dortmund},
     2922  month  = {Mar},
     2923  year   = {2007}
     2924}
     2925
     2926@MASTERSTHESIS{Dreyer:Dipl,
     2927  author = {Dreyer, J.},
     2928  title  = {Hard- und {S}oftwareentwicklung im {R}ahmen der {E}xperimente {AMANDA} und {IceCube}},
     2929  school = {Universit{\"a}t Dortmund},
     2930  month  = {Nov},
     2931  year   = {2005}
     2932}
     2933
     2934@MASTERSTHESIS{Refflinghaus:Dipl,
     2935  author = {Refflinghaus, F.},
     2936  title  = "{Datenkompression der Photomultiplier-Signale des AMANDA-Neutrinodetektors}",
     2937  school = {Universit{\"a}t Dortmund},
     2938  month  = {Nov},
     2939  year   = {2005}
     2940}
     2941
     2942@MASTERSTHESIS{Bartelt:Dipl,
     2943  author = {Bartelt, M.},
     2944  title  = "{Test von alternativen Konzepten zur Hochspannungsversorgung des IceCube-Detektors}",
     2945  school = {Universit{\"a}t Dortmund},
     2946  month  = {Dez},
     2947  year   = {2004}
     2948}
     2949
     2950@MASTERSTHESIS{Deeg:Dipl,
     2951  author = {Deeg, M.},
     2952  title  = "{Prototypenentwicklung eines Detektorsystems für ultrahochenergetische Kosmische Strahlung}",
     2953  school = {Universit{\"a}t Dortmund},
     2954  month  = {Feb},
     2955  year   = {2003}
     2956}
     2957
     2958@PHDTHESIS{Messarius:PhD,
     2959  author = {Messarius, T.},
     2960  title  = {Entwurf und Realisation des AMANDA Softwaretriggers f\"ur das TWR Datenauslese System},
     2961  school = {Universit{\"a}t Dortmund},
     2962  month  = {Aug},
     2963  year   = {2003}
     2964}
     2965
     2966@PHDTHESIS{Wagner:PhD,
     2967  author = {Wagner, W.},
     2968  title  = "{Design and Realisation of a new AMANDA Data Aquisition System with Transient Waveform Recorders}",
     2969  school = {Universit{\"a}t Dortmund},
     2970  month  = {Oct},
     2971  year   = {2003}
     2972}
     2973
     2974@PHDTHESIS{Schroeder:PhD,
     2975  author = {Schroeder, F.},
     2976  title  = "{Simulation und Beobachtung von Luftschauern unter großen Zenitwinkeln}",
     2977  school = {Bergische Universit{\"a}t Wuppertal},
     2978  year   = {2001}
     2979}
     2980
     2981@ARTICLE{hepph0407075,
     2982  author  = {{Albert}, J.},
     2983  title   = "{Implementation of the Random Forest Method for the Imaging Atmospheric Cherenkov Telescope MAGIC}",
     2984  journal = {ArXiv e-prints},
     2985  eprint  = {0709.3719},
     2986  year    = {2007},
     2987  month   = {Sep},
     2988  volume  = {709},
     2989  adsurl  = {http://cdsads.u-strasbg.fr/abs/2007arXiv0709.3719A},
     2990  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     2991}
     2992
     2993@INPROCEEDINGS{Curtef:CDM,
     2994   author = {Curtef, V. and Backes, M. and Hadasch, D.},
     2995   title  = {Improvements of the energy reconstruction for the MAGIC telescope by means of analysis and Monte Carlo techniques},
     2996booktitle = {Astronomische Nachrichten},
     2997   volume = 328,
     2998     year = 2007,
     2999}
     3000
     3001@INPROCEEDINGS{Rueger,
     3002   author = {Rueger, M. and Spanier, F.},
     3003booktitle = {Astronomische Nachrichten},
     3004   volume = 328,
     3005     year = 2007,
     3006}
     3007
     3008@INPROCEEDINGS{Burkart,
     3009   author = {Burkart, T. and Spanier, F.},
     3010booktitle = {Astronomische Nachrichten},
     3011   volume = 328,
     3012     year = 2007,
     3013}
     3014
     3015@INPROCEEDINGS{Ruegamer,
     3016   author = {Ruegamer, S. and others},
     3017   title  = {Wide Range Multifrequency Observations of Northern TeV Blazars},
     3018booktitle = {Astronomische Nachrichten},
     3019   volume = 328,
     3020     year = 2007,
     3021}
     3022
     3023@ARTICLE{Kneiske,
     3024   author = {{Kneiske}, T.~M. and {Bretz}, T. and {Mannheim}, K. and {Hartmann}, D.~H.},
     3025    title = {Implications of cosmological gamma-ray absorption. {II}. Modification of gamma-ray spectra},
     3026  journal = {\aap},
     3027     year = 2004,
     3028    month = jan,
     3029   volume = 413,
     3030    pages = {807-815},
     3031      doi = {10.1051/0004-6361:20031542},
     3032   adsurl = {http://adsabs.harvard.edu/cgi-bin/nph-bib_query?bibcode=2004A%26A...413..807K&db_key=AST},
     3033  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     3034}
     3035 
     3036@INPROCEEDINGS{Mannheim:1995,
     3037  author    = {{Mannheim}, K.}, 
     3038  title     = "{Gamma Rays from Compact Objects. (Ludwig Biermann Award Lecture 1995)}",
     3039  booktitle = {Reviews in Modern Astronomy},
     3040  year      = 1996,
     3041  series    = {Reviews in Modern Astronomy},
     3042  volume    = 9,
     3043  editor    = {{Schielicke}, R.~E.},
     3044  pages     = {17-48}
     3045}
     3046
     3047@ARTICLE{Albert:501,
     3048 author  = {{MAGIC Collaboration}},
     3049 title   = "{Variable VHE gamma-ray emission from Markarian 501}",
     3050 journal = {ArXiv Astrophysics e-prints},
     3051 eprint  = {astro-ph/0702008},
     3052 year    = 2007,
     3053 month   = feb,
     3054 adsurl  = {http://cdsads.u-strasbg.fr/abs/2007astro.ph..2008M},
     3055 adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     3056}
     3057
     3058@INPROCEEDINGS{Muenich:Icrc,
     3059   author = {M"unich, K. and L"unemann, Jan},
     3060    title = {Measurement of the atmospheric lepton energy spectra with {AMANDA-II}},
     3061booktitle = {$30^{th}$ International Cosmic Ray Conference},
     3062     year = 2007,
     3063}
     3064
     3065@INPROCEEDINGS{Bretz:2005drive,
     3066   author = {Bretz, T. and Dorner, D. and Wagner, R.M. and Riegel, B.},
     3067    title = { A Scalable Drive System Concept for Future Projects},
     3068booktitle = {Towards a network of atmospheric Cherenkov detectors VII},
     3069     year = 2005,
     3070    month = Apr
     3071}
     3072
     3073@ARTICLE{Moralejo:2004,
     3074   author = {{Moralejo}, A. and others},
     3075    title = "{Monte Carlo estimate of flux sensitivity of MAGIC for point-like sources}",
     3076  journal = {Internal MAGIC report},
     3077     year = 2004,
     3078    month = {Dec},
     3079}
     3080
     3081@ARTICLE{MAGICsensi,
     3082 author = {{MAGIC Collaboration}},
     3083 title = "{MAGIC sensitivity at \url{http://magic.mppmu.mpg.de/physics/results/}}",
     3084 journal = {Official MAGIC website},
     3085 eprint = {http://magic.mppmu.mpg.de/physics/results/released/sensit.jpg},
     3086}
     3087
     3088@ARTICLE{Magnussen:1998,
     3089 author = {{Magnussen}, N.},   
     3090 title = "{The MAGIC Telescope Project for Gamma Astronomy above 10 GeV}",
     3091 journal = {ArXiv Astrophysics e-prints},
     3092 eprint = {astro-ph/9805184},
     3093 year = 1998,
     3094 month = may,
     3095 adsurl = {http://adsabs.harvard.edu/abs/1998astro.ph..5184M},
     3096 adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     3097}
     3098
     3099@INPROCEEDINGS{Vassiliev:1999,
     3100 author = {{Vassiliev}, V.~V.},
     3101 title = "{VERITAS: Performance characteristics (baseline design)}",
     3102 booktitle = {International Cosmic Ray Conference},
     3103 year = 1999,
     3104 series = {International Cosmic Ray Conference},
     3105 volume = 5,
     3106 pages = {299-+},
     3107 adsurl = {http://adsabs.harvard.edu/abs/1999ICRC....5..299V},
     3108 adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     3109
     3110
     3111@ARTICLE{Leier:2006,
     3112 author = {{Leier}, D. and {Becker}, J.~K. and {Groß}, A. and {Rhode}, W.},
     3113 title = "{Coincident observations between Neutrino- and TeV-Cherenkov-Telescopes}",
     3114 journal = {Internal IceCube report},
     3115 year = 2006,
     3116 month = {Apr},
     3117
     3118
     3119@ARTICLE{Barcelo,
     3120author = {{Pegna}, R. and {Barcel{\'o}}, M. and {Bitossi}, M. and {Cecchi}, R. and
     3121{Fagiolini}, M. and {Paoletti}, R. and {Piccioli}, A. and {Turini}, N.
     3122},
     3123title = "{A GHz sampling DAQ system for the MAGIC-II telescope}",
     3124journal = {Nuclear Instruments and Methods in Physics Research A},
     3125year = 2007,
     3126month = mar,
     3127volume = 572,
     3128pages = {382-384},
     3129doi = {10.1016/j.nima.2006.10.375},
     3130adsurl = {http://cdsads.u-strasbg.fr/abs/2007NIMPA.572..382P},
     3131adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     3132}
     3133
     3134@MISC{Fraunhofer,
     3135  author = {Braun, S.},
     3136  title  = {Private communication},
     3137  school = {IWS Dresden, Fraunhofer Institute for Material and Beam Technology},
     3138  month  = {Sep},
     3139  year   = {2007},
     3140}
     3141
     3142@ARTICLE{AUGER-AGN,
     3143author = {{The Pierre Auger Collaboration}},
     3144title = "{Correlation of the Highest Energy Cosmic Rays with Nearby Extragalactic Objects}",
     3145journal = {Science},
     3146eprint = {0711.2256},
     3147year = 2007,
     3148month = nov,
     3149volume = 318,
     3150    pages = {938},
     3151}
     3152
     3153@ARTICLE{Tescaro:2007,
     3154 author = {{Tescaro}, D. and others },
     3155 title = "{Study of the performance and capability of the new ultra-fast 2 GSample/s FADC data acquisition system of the MAGIC telescope}",
     3156 journal = {ArXiv e-prints},
     3157 eprint = {0709.1410},
     3158 year = 2007,
     3159 month = sep,
     3160 volume = 709,
     3161 adsurl = {http://adsabs.harvard.edu/abs/2007arXiv0709.1410T},
     3162 adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     3163}
     3164
     3165@ARTICLE{Merrit,
     3166  title    = {Massive Black Hole Binary Evolution},
     3167  author   = {Merrit, D. and Milosavljevic, M.},
     3168  journal  = {Living Reviews in Relativity},
     3169  year     = {2005},
     3170  number   = {8},
     3171  volume   = {8},
     3172  keywords = {},
     3173  url      = {http://www.livingreviews.org/lrr-2005-8}
     3174}
     3175
     3176
     3177@INPROCEEDINGS{Juan:2000,
     3178   author = {{Cortina}, J. and {Barrio}, J.~A. and {Rauterberg}, G. and {The HEGRA Collaboration}
     3179        },
     3180    title = "{The New Data Acquisition Systems of the First Telescope in HEGRA}",
     3181booktitle = {American Institute of Physics Conference Series},
     3182     year = 2000,
     3183   series = {American Institute of Physics Conference Series},
     3184   volume = 515,
     3185   editor = {{Dingus}, B.~L. and {Salamon}, M.~H. and {Kieda}, D.~B.},
     3186    pages = {368-+},
     3187   adsurl = {http://adsabs.harvard.edu/abs/2000AIPC..515..368C},
     3188  adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System}
     3189}
     3190
     3191@INPROCEEDINGS{Kestel:2000,
     3192   author = {{Kestel}, M. and {The HEGRA Collaboration}
     3193        },
     3194    title = "{The upgrade of the HEGRA CT1 telescope with new mirrors and new Trigger system}",
     3195booktitle = {16$^{th}$ European cosmic ray symposium},
     3196     year = 1998,
     3197   series = {Nuclear Physics B, Proc. Suppl.},
     3198   editor = {{Medina}, J.},
     3199}
  • trunk/Dwarf/Documents/ApplicationDFG/application.tex

    r8616 r8771  
    11\documentclass[12pt,openbib]{article}
    2 \usepackage{german,graphicx,amssymb,amsmath,wasysym,stmaryrd,times,a4wide,wrapfig,exscale,xspace,url,fancyhdr}
     2\usepackage{german,graphicx,eurosym,amssymb,amsmath,wasysym,stmaryrd,times,a4wide,wrapfig,exscale,xspace,url,fancyhdr}
    33\usepackage[round]{natbib}
    44
     
    105105{\sc Mannheim, Karl, Prof.~Dr.}&\multicolumn{2}{l|}{Universit"atsprofessor (C4)}\\\hline\hline
    106106{\ }&{\bf Birthday}&{\bf Nationality}\\
    107 {\ }&Jan 4 1960&German\\\hline
     107{\ }&Jan 4 1963&German\\\hline
    108108\multicolumn{3}{|l|}{\bf Institut, Lehrstuhl}\\
    109109\multicolumn{3}{|l|}{Institut f"ur Theoretische Physik und Astrophysik}\\
     
    126126Long-term VHE $\gamma$-ray monitoring of bright blazars with a dedicated Cherenkov telescope
    127127
     128Langzeitbeobachtung von hellen VHE $\gamma$-Blazaren mit einem dedizierten Cherenkov Teleskop
     129
    128130\paragraph{1.3 Discipline and field of work (Fachgebiet und Arbeitsrichtung)}~\\
    129131Astronomy and Astrophysics, Particle Astrophysics
    130132
    131133\paragraph{\bf 1.4 Scheduled duration in total (Voraussichtliche Gesamtdauer)}~\\
    132 3\,years (+ seit wann das Vorhaben l"auft, seit wann es von der DFG gef"ordert wird)
    133 (evtl. gr"o"ser als der Antragszeitraum?)
     134After successful completion of the three-year work plan developed in
     135this proposal, we will ask for an extension of the project for another
     136two years to carry out an observation program centered on the signatures
     137of supermassive binary black holes.
    134138
    135139\paragraph{\bf 1.5 Application period (Antragszeitraum)}~\\
    136 3\,years. Work on the project may and will begin immediately after the
    137 funding.
     1403\,years. The work on the project will begin immediately after the
     141funding. 
    138142
    139143\paragraph{\bf 1.6 Summary (Zusammenfassung)}~\\
    140 % AUCH IN DEUTSCH BEIFšGEN
    141 We propose to set up an imaging air Cherenkov telescope with low-cost
    142 but high performance design for robotic and remote operation. The goal
    143 is to achieve long-term monitoring of bright blazars which will unravel
    144 the origin and nature of their variability (und den zugrunde liegen
    145 Beschleunigungsmachanismen der kosmischen Strahlung). The telescope
    146 design is based on a technological upgrade of one of the former
    147 telescopes of the HEGRA collaboration still located at the Observatorio
    148 Roque de los Muchachos on the Canarian Island La Palma (Spain). With
    149 the upgrade an improvement in senitivity by 25\%{\bf (?)} and a lower
    150 energy threshold in the order of 350\,GeV{\bf (?)} will be achieved.
    151 
    152 {\bf IceCube erw"ahnen?}
    153 {\em Nicht gescheduled von anderen IACTs?}
    154 
    155 {\em
     144We propose to set up a robotic imaging air Cherenkov telescope with low
     145cost, but high performance design for remote operation. The goal is to
     146dedicate this gamma-ray telescope to long-term monitoring observations
     147of nearby, bright blazars at very high energies. We will (i) search for
     148orbital modulation of the blazar emission due to supermassive black
     149hole binaries, (ii) study the statistics of flares and their physical
     150origin, and (iii) correlate the data with corresponding data from the
     151neutrino observatory IceCube to search for evidence of hadronic
     152emission processes. The observations will also trigger follow-up
     153observations of flares with higher sensitivity telescopes such as
     154MAGIC, VERITAS, and H.E.S.S.\ Joint observations with the Whipple
     155monitoring telescope will start a future 24h-monitoring of selected
     156sources with a distributed network of robotic telescopes. The telescope
     157design is based on a full technological upgrade of one of the former
     158telescopes of the HEGRA collaboration (CT3) still located at the
     159Observatorio Roque de los Muchachos on the Canarian Island La Palma
     160(Spain). After this upgrade, the telescope will be operated
     161robotically, a much lower energy threshold below 350\,GeV will be
     162achieved and the observation time required for gaining the same signal
     163as with CT3 will be reduced by a factor of 6.
     164
     165Unser Vorhaben besteht darin, ein robotisches Luft-Cherenkov-Teleskop
     166mit geringen Kosten aber hoher Leistung fernsteuerbar in Betrieb zu
     167nehmen. Das Ziel ist es, dieses gamma-ray Teleskop ganz der
     168Langzeitbeobachtung von nahen, hellen Blazaren bei sehr hohen Energien
     169zu widmen. Wir werden (i) nach Modulationen der Blazar-Emission durch
     170Bin"arsysteme von supermassiven Schwarzen L"ochern suchen, (ii) die
     171Statistik von gamma-Ausbr"uchen und deren physikalischen Ursprung
     172untersuchen und (iii) die Daten mit entsprechenden Daten von dem
     173Neutrino-Telskop IceCube korrelieren, um Nachweise f"ur hadronische
     174Emissionsprozesse zu finden. Die Beobachtungen werden zus"atzlich
     175Nachfolgebeobachtungen von gamma-Ausbr"uchen mit h"ohersensitiven
     176Teleskopen wie MAGIC, VERITAS und H.E.S.S.\ triggern. Auf einander
     177abgestimmte Beobachtungen zusammen mit dem Whipple Teleskop werden der
     178Auftakt zu einer zuk"unftigen 24-Stunden-Beobachtung von selektierten
     179Quellen mit einem verteilten Netzwerk robotischer Cherenkov-Teleskope
     180sein. Das Teleskop-Design basiert auf einem kompletten technologischen
     181Upgrade eines der Teleskope der fr"uheren HEGRA-Kollaboration, welches
     182noch immer am Observatorio Roque de los Muchachos auf der kanarischen
     183Insel La Palma (Spanien) gelegen ist. Nach diesem Upgrade wird das
     184Teleskop robotisch betrieben werden und eine wesentlich geringere
     185Energieschwelle von unter 350\,GeV aufweisen, w"ahrend gleichzeitig die
     186notwendige Beobachtungszeit, um dasselbe Signal wie CT3 zu erhalten, um
     187einen Faktor 6 verringert wird.
     188
     189\newpage
     190
     191\section[2]{Stand der Forschung, eigene Vorarbeiten\\Science case, preliminary work by proposer}
     192
     193\subsection[2.1]{Science case (Stand der Forschung)}
     194
     195Since the termination of the HEGRA observations, the succeeding
     196experiments MAGIC and H.E.S.S. have impressively extended the physical
     197scope of gamma ray astronomy detecting tens of formerly unknown gamma
     198ray sources and analyzing their energy spectra, morphology, and
     199temporal behavior. This became possible by lowering the energy
     200threshold from 700\,GeV to less than 100\,GeV and increasing at the same
     201time the sensitivity by a factor of five. A diversity of astrophysical
     202source types such as pulsar wind nebulae, supernova remnants,
     203microquasars, pulsars, radio galaxies, clusters of galaxies, gamma ray
     204bursts and blazars have been studied with these telescopes.
     205
     206The main class of extragalactic, very high energy gamma-rays sources
     207detected with imaging air-Cherenkov telescopes are blazars, i.e.
     208accreting supermassive black holes exhibiting a relativistic jet that
     209is closely aligned with the line of sight. The non-thermal blazar
     210spectrum covers up to 20 orders of magnitude in energy, from
     211long-wavelength radio waves to multi-TeV gamma-rays. In addition,
     212blazars are characterized by rapid variability, high degrees of
     213polarization, and super-luminal motion of knots in their
     214high-resolution radio images. The observed behavior can readily be
     215explained assuming relativistic bulk motion and in situ particle
     216acceleration, e.g. at shock waves, leading to synchrotron
     217(radio-to-x-ray) and self-Compton (gamma-ray) emission \citep{Blandford}.
     218Additionally, inverse Compton scattering of external photons may play a
     219role in producing the observed gamma rays \citep{Dermer,Begelman}.
     220Variability may hold the key to understanding the details of the
     221emission processes and the source geometry, and the development of
     222time-dependent models is currently on the agenda of model builders
     223worldwide.
     224
     225Although particle acceleration inevitably affects electrons and protons
     226(ions), the electrons are commonly believed to be responsible for
     227producing the observed emission owing to their lower mass and thus much
     228stronger energy losses (at the same energy). The relativistic protons,
     229which could either originate from the accretion flow or from entrained
     230ambient matter, will quickly dominate the momentum flow of the jet.
     231This {\em baryon pollution} has been suggested to solve the energy
     232transport problem in gamma ray bursts, and is probably present in
     233blazar jets as well, even if they originate as pair jets in a black
     234hole ergosphere\citep{Meszaros}. Protons and ions accelerated in the
     235jets of blazars can reach extremely high energies before energy losses
     236become important \citep{Mannheim:1993}. Escaping particles contribute
     237to the observed flux of ultrahigh energy cosmic rays in a major way.
     238Blazars and their unbeamed hosts, the radio galaxies, are thus the
     239prime candidates for origin of ultrahigh energy cosmic rays
     240\citep{Rachen}, and this can be investigated with the IceCube and AUGER
     241experiments. Recent results of the AUGER experiment show a significant
     242anisotropy of the highest energy cosmic rays and point at either nearby
     243AGN or sources with a similar spacial distribution as their origin
     244\citep{AUGER-AGN}.
     245
     246In some flares, a large ratio of the gamma-ray to optical luminosity is
     247observed. This is difficult to reconcile with the primary leptonic
     248origin of the emission, since the accelerated electron pressure would
     249largely exceed the magnetic field pressure. For shock acceleration to
     250work efficiently, particles must be confined by the magnetic field for
     251a time longer than the cooling time. The problem vanishes in the
     252following model: Photo-hadronic interactions of accelerated protons and
     253synchrotron photons induce electromagnetic cascades, which in turn
     254produce secondary electrons causing high energy synchrotron
     255gamma-radiation. This demands much stronger magnetic fields in line
     256with magnetic confinement \citep{Mannheim:1995}. Short variability time
     257scales can result from dynamical changes of the emission zone, running
     258e.g. through an inhomogeneous environment.
     259
     260The contemporaneous spectral energy distributions for hadronic and
     261leptonic models bear many similarities, but also marked differences,
     262such as multiple bumps which are possible even in a one-zone hadronic
     263model \citep{Mannheim:1999}. These properties allow conclusions
     264about the accelerated particles. Noteworthy, even for nearby blazars
     265the spectrum must be corrected for attenuation of the gamma rays due to
     266pair production in collisions with low-energy photons from the
     267extragalactic background radiation field \citep{Kneiske}.
     268Ultimately, the hadronic origin of the emission must be probed with
     269correlated gamma-ray and neutrino observations, since the pion decay
     270initiating the cascades involves a fixed ratio of electron-positron
     271pairs, gamma-rays, and neutrinos. A dedicated monitoring campaign
     272jointly with IceCube has the best chance for success. Pilot studies
     273done with MAGIC and IceCube indicate that the investigation of neutrino
     274event triggered gamma-ray observations are statistically
     275inconclusive \citep{Leier:2006}.
     276
     277The variability time scale of blazars ranges from minutes to months,
     278generally showing the largest amplitudes and the shortest time scales
     279at the highest energies. Recently, a doubling time scale of two minutes
     280has been observed in a flare of Mrk\,501 with the MAGIC
     281telescope \citep{Albert:501}. A giant flare of PKS\,2155-304 discovered by
     282H.E.S.S.\ \citep{Aharonian:2007pks} has shown similarly short
     283doubling time scales and a flux of up to 16 times the flux of the Crab
     284Nebula. Indications for TeV flares without evidence for an accompanying
     285x-ray flare, coined orphan flares, have been observed, questioning the
     286synchrotron-self-Compton mechanism being responsible for the
     287gamma-rays. Model ramifications involving several emission components,
     288external seed photons, or hadronically induced emission may solve the
     289problem \citep{Blazejowski}. Certainly, the database for contemporaneous
     290multi-wavelength observations is still far from proving the
     291synchrotron-self-Compton model.
     292
     293Generally, observations of flares are prompted by optical or x-ray
     294alerts, leading to a strong selection bias. The variability presumably
     295reflects the non-steady feeding of the jets and the changing interplay
     296between particle acceleration and cooling. In this situation,
     297perturbations of the electron density or the bulk plasma velocity are
     298traveling down the jet. The variability could also reflect the changing
     299conditions of the external medium to which the jet flow adapts during
     300its passage through it. In fact, a clumpy, highly inhomogeneous
     301external medium is typical for active galactic nuclei, as indicated by
     302their clumpy emission line regions, if visible against the
     303Doppler-enhanced blazar emission. Often the jets bend with a large
     304angle indicating shocks resulting from reflections off intervening
     305high-density clouds. Changes in the direction of the jet flow lead to
     306large flux variations due to differential Doppler boosting.
     307
     308Helical trajectories, as seen in high-resolution radio maps resulting
     309from the orbital modulation of the jet base in supermassive black hole
     310binaries, would lead to periodic variability on time scales of months
     311to years \citep{Rieger:2007}. Binaries are expected to be the most
     312common outcome of the repeated mergers of galaxies which have
     313originally built up the blazar host galaxy. Each progenitor galaxy
     314brings its own supermassive black hole as expected from the
     315Magorrian-Kormendy relations. It is subject to stellar dynamical
     316evolution in the core of the merger galaxy, of which only one pair of
     317black holes is expected to survive near the center of gravity.
     318Supermassive black hole binaries close to coalescence are thus expected
     319to be generic in blazars. Angular momentum transport by collective
     320stellar dynamical processes is efficient to bring them to distances
     321close to where the emission of gravitational waves begins to dominate
     322their further evolution until coalescence. Their expected gravitational
     323wave luminosity is spectacularly high, even long before final
     324coalescence and the frequencies are favorable for the detectors under
     325consideration (LISA). Detection of gravitational waves relies on exact
     326templates to filter out the signals and the templates can be computed
     327from astrophysical constraints on the orbits and masses of the black
     328holes. TeV gamma-rays, showing the shortest variability time scales,
     329probe deepest into the jet and are thus the most sensitive probe of the
     330orbital modulation at the jet base. Relativistic aberration is helpful
     331in bringing down the observed periods to below the time scale of years.
     332A tentative hint for a 23-day periodicity of the TeV emission from
     333Mrk\,501 during a phase of high activity in 1997 was reported by
     334HEGRA \citep{Kranich}, and was later confirmed including x-ray and
     335Teleacope Array data \citep{Osone}. The observations can be explained in
     336a supermassive black hole binary scenario \citep{Rieger:2000}.
     337Indications for helical trajectories and periodic modulation of optical
     338and radio lightcurves on time scales of tens of years have also been
     339described in the literature (e.g. \cite{Hong,Merrit}).
     340
     341To overcome the limitations of biased sampling, a complete monitoring
     342database for a few representative bright sources needs to be obtained.
     343Space missions with all-sky observations at lower photon energies, such
     344as GLAST, GRIPS, or eROSITA, will provide significant multi-wavelength
     345exposure simultaneous to the VHE observations, and this is a new
     346qualitative step for blazar research. For the same reasons, the VERITAS
     347Collaboration keeps the former Whipple telescope alive, albeit its
     348performance seems to have strongly degraded. It is obvious that the
     349large Cherenkov telescopes such as MAGIC, H.E.S.S.\ or VERITAS are mainly
     350used to discover new sources at the sensitivity limit. Thus they will
     351not perform monitoring observations of bright sources with complete
     352sampling during their visibility. However, these telescopes will be
     353triggered by monitoring telescopes and thus improve the described
     354investigations. In turn, operating a smaller but robotic telescope is
     355an essential and cost-effective contribution to the plans for
     356next-generation instruments in ground-based gamma-ray astronomy.
     357Know-how for the operation of future networks of robotic Cherenkov
     358telescopes, e.g. a monitoring array around the globe or a single-place
     359array like CTA, is certainly needed given the high operating shift
     360demands of the current installations.
     361
     362In summary, there are strong reasons to make an effort for the
     363continuous monitoring of the few exceptionally bright blazars. This can
     364be achieved by operating a dedicated monitoring telescope of the
     365HEGRA-type, referred to in the following as DWARF (Dedicated
     366multiWavelength Agn Research Facility). Its robotic design will keep
     367the demands on personal and infrastructure on the low side, rendering
     368it compatible with the resources of University groups. The approach is
     369also optimal to educate students in the strongly expanding field of
     370astroparticle physics.
     371
     372Assuming conservatively the performance of a single HEGRA-type
     373telescope, long-term monitoring of at least the following blazars is
     374possible: Mrk\,421, Mrk\,501, 1ES\,2344+514, 1ES\,1959+650,
     375H\,1426+428, PKS\,2155-304. We emphasize that DWARF will run as a
     376facility dedicated to these targets only, providing a maximum
     377observation time for the program. Utilizing recent developments, such
     378as improvements of the light collection efficiency due to an improved
     379mirror reflectivity and a better PM quantum efficiency, a 30\%
     380improvement in sensitivity and a lower energy-threshold is reasonable.
     381Current studies show that with a good timing resolution (2\,GHz) a
     382further 50\% increase in sensitivity (compared to a 300\,MHz system) is
     383feasible. Together with an extended mirror area and a large camera, a
     384sensitivity improvement compared to a single HEGRA telescope of a
     385factor of 2.5 and an energy threshold below 350\,GeV is possible.
     386
     387\subsection[2.2]{Preliminary work by proposers (Eigene Vorarbeiten)}
     388
     389From the experience with the construction, operation and data analysis
     390of Amanda, IceCube, HEGRA and MAGIC the proposing groups contribute the
     391necessary knowledge and experience to build and operate a small imaging
     392air Cherenkov telescope.
     393
     394\paragraph{Hardware}
     395
     396The Dortmund group is working on experimental and phenomenological
     397astroparticle physics. In the past, the following hardware components
     398were successfully developed: a Flash-ADC based DAQ (TWR, transient
     399waveform recorder), currently in operation for data acquisition in the
     400AMANDA subdetector within the IceCube telescope \citep{Wagner:PhD}, an
     401online software Trigger for the TWR-DAQ system \citep{Messarius:PhD},
     402online data compression mechanisms (TWR DAQ) \citep{Refflinghaus:Dipl},
     403monitoring software for the TWR-DAQ-data \citep{Dreyer:Dipl} and
     404in-ice-HV-power-supply for IceCube. This development was done with the
     405companies CAEN, Pisa, Italy and Iseg, Rossendorf, Germany. The HV
     406modules were long time tested under different temperature conditions
     407connected to operating photomultipliers \citep{Bartelt:Dipl}. Prototypes
     408for the scintillator counters of the planned Air Shower Array {\em
     409SkyView} were developed and operated for two years \citep{Deeg:Dipl}.
     410Members of the group (engineers) were involved in the fast trigger
     411development for H1 and are involved in the FPGA-programming for the
     412LHCb data read out. The group may further use the well equipped
     413mechanical and electronic workshops in Dortmund and the electronic
     414development departure of the faculty.
     415
     416The ultra fast drive system of the MAGIC telscopes, suitable for fast
     417repositioning in case of Gamma-Ray Bursts, has been developed,
     418commissioned and programmed by the W"urzburg group
     419\citep{Bretz:2003drive,Bretz:2005drive}. To correct for axis
     420misalignments and possible deformations of the structure (e.g.\ bending
     421of camera holding masts), a pointing correction algorithm was developed
     422\citep{Dorner:Diploma}. Its calibration is done by measurement of the
     423reflection of bright guide stars on the camera surface and ensures a
     424pointing accuracy well below the pixel diameter. Hardware and software
     425(CCD readout, image processing and pointing correction algorithms) have
     426also been developed and are in operation successfully since more than
     427three years \citep{Riegel:2005icrc2}.
     428
     429Mirror structures made of plastic material have been developed as
     430Winston Cones for balloon flight experiments previously by the group of
     431Wolfgang Dr"oge. W"urzburg has also participated in the development of
     432a HPD test bench, which has been setup in Munich and W"urzburg. With
     433this setup, HPDs for future improvement of the sensitivity of the MAGIC
     434camera are investigated.
     435
     436\paragraph{Software}
     437
     438The W"urzburg group has developed a full MAGIC analysis package,
     439flexible and modular enough to easily process DWARF data
     440\citep{Bretz:2005paris,Riegel:2005icrc,Bretz:2005mars}. A method for
     441absolute light calibration of the PMs based on Muon images has been
     442adapted and further improved for the MAGIC telescope
     443\citep{Meyer:Diploma,Goebel:2005}. Both, data analysis and Monte Carlo
     444production, have been fully automatized, such that both can run with
     445sparse user interaction \citep{Dorner:2005icrc}. The analysis was
     446developed to be powerful and as robust as possible to be best suited
     447for automatic processing \citep{Dorner:2005paris}. Experience with
     448large amount of data (up to 15\,TB/month) has been gained over five
     449years now. The datacenter is equipped with a professional multi-stage
     450(hierarchical) storage system. Two operators are paid by the physics
     451faculty. Currently efforts in W"urzburg and Dortmund are ongoing to
     452turn the old inflexible Monte Carlo programs, used by the MAGIC
     453collaboration, into modular packages which allows easy simulation of
     454other setups. Experience with Monte Carlo simulations, especially
     455CORSIKA, is contributed by the Dortmund group, which has actively
     456implemented changes into the CORSIKA program, such as an extension to
     457large zenith angles, prompt meson production and a new atmospheric
     458model \citep{Haffke:Dipl,Schroeder:PhD} for the local atmosphere of La
     459Palma. Furthermore the group has developed high precision Monte Carlos
     460for Lepton propagation in different media \citep{hepph0407075}. An
     461energy unfolding method and program has been adapted for IceCube and
     462MAGIC data analysis \citep{Curtef:CM,Muenich:ICRC}.
     463
     464\paragraph{Phenomenology}
     465
     466Both groups further have experience with source models and theoretical
     467computations of gamma ray and neutrino spectra expected from blazars.
     468The relation between the two messengers is a prime focus of interest.
     469Experience with corresponding multi-messenger data analyses involving
     470MAGIC and IceCube data is available in the Dortmund group. Research
     471activities are also related with relativistic particle acceleration
     472\citep{Meli} and gamma ray attenuation \citep{Kneiske}. The W"urzburg
     473group has organized and carried out multi-wavelength observations of
     474bright blazars involving MAGIC, Suzaku, the IRAM telescopes, and the
     475optical KVA telescope \citep{Ruegamer}. Signatures of supermassive
     476black hole binaries, which are most relevant also for gravitational
     477wave detectors, are investigated jointly with the German LISA
     478consortium (Burkart, Elbracht ongoing research, funded by DLR).
     479Secondary gamma rays due to dark matter annihilation events are
     480investigated both from their particle physics and astrophysics aspects.
     481Another main focus of research is on models of radiation and particle
     482acceleration processes in blazar jets (hadronic and leptonic models),
     483leading to predictions of correlated neutrino emission \citep{Rueger}.
     484This includes simulations of particle acceleration due to the Weibel
     485instability \citep{Burkart}. Much of this research at W"urzburg is
     486carried out in the context of the research training school GRK\,1147
     487{\em Theoretical Astrophysics and Particle Physics}.
     488
     489\section[3]{Ziele/Goals}
     490
     491\subsection[3.1]{Ziele/Goals}
     492
     493The aim of the project is to put the former CT3 of the HEGRA
     494collaboration on the Roque de los Muchachos back into operation - with
     495an enlarged mirror surface, a new camera with higher quantum
     496efficiency, and new fast data acquisition system, under the name of
     497DWARF. The energy threshold will be lowered, and  the sensitivity of
     498DWARF will be greatly improved compared to HEGRA CT3 ({\bf see plot
     499xxx/at the end}). Commissioning and the first year of data taking
     500should be carried out within the three years of the requested funding
     501period.
     502
     503\begin{figure}[ht]
     504\begin{center}
     505 \includegraphics*[width=0.495\textwidth,angle=0,clip]{CT3.eps}
     506 \includegraphics*[width=0.495\textwidth,angle=0,clip]{DWARF.eps}
     507 \caption{Left: xxxxx Right: yyyy}
     508\label{CT3}
     509\label{DWARF}
     510\end{center}
     511\end{figure}
     512
     513The telescope will be operated robotically to reduce costs and man
     514power demands.  Furthermore, we seek to obtain know-how for the
     515operation of future networks of robotic Cherenkov telescopes (e.g. a
     516monitoring array around the globe or CTA) or telescopes at inaccessible
     517sites. From the experience with the construction and operation of MAGIC
     518or HEGRA, the proposing groups consider the planned focused approach
     519(small number of experienced scientists) as optimal for achieving the
     520project goals. The available automatic analysis package developed by
     521the W"urzburg group for MAGIC is modular and flexible, and can thus be
     522used with minor changes for the DWARF project.
     523
     524\begin{figure}[htb]
     525\begin{center}
     526 \includegraphics*[width=0.8\textwidth,angle=0,clip]{visibility.eps}
     527 \caption{blablbaaaa}
     528\label{visibility}
     529\end{center}
     530\end{figure}
     531
     532%[[Image:dwarf-source-visibility.png|thumb|300px|Source visibility ([[Media:dwarf-source-visibility.eps|eps]])]]
     533
     534The scientific focus of the project will be on the long-term monitoring
     535of bright, nearby VHE emitting blazars.  At least one of the proposed
     536targets will be visible any time of the year (see plot). For
     537calibration purposes, some time will be scheduled for observations of
     538the Crab nebula.  The blazar observations will allow
    156539\begin{itemize}
    157 \item Kerziele des Antrags f"ur die bewilligenden Gremien
    158 \item Bei Bewilligung: Internet Datenbank
    159 \item Verwendung von themenrelevanten Schl"uselbegriffe
    160 \item M"oglichst keine Abk"urzungen
    161 \item Verst"andlichkeit auch f"ur nicht Fachleute (gegeben?)
    162 \item nicht mehr als 15 Zeilen oder max. 1600 Zeichen.
    163 \end{itemize}
    164 }
    165 
    166 \newpage
    167 
    168 \section[2]{Stand der Forschung, eigene Vorarbeiten\\State of the art, preliminary work by proposer}
    169 
    170 \subsection[2.1]{State of the art (Stand der Forschung)}
    171 
    172 {\em
    173 \begin{itemize}
    174 \item Knapp und pr"azise in der unmittelbaren Beziehung zum Vorhaben
    175 \item Als Begr"undung f"ur eigene Arbeit
    176 \item inkl. einschl"agiger Arbeiten anderer Wissenschaftler
    177 \item $\to$ Einordnung eigener Arbeit, welcher Beitrag zu welchen Fragen
    178 \end{itemize}
    179 }
    180 
    181 {\bf Hier gibt es glaub ich drei Punkte: Physik, IACTs und gAPD}
    182 
    183 \paragraph{Introduction:} Since the termination of the HEGRA
    184 observations, the succeeding experiments MAGIC and H.E.S.S.\ have
    185 impressively extended the physical scope of gamma ray observations by
    186 detecting tens of formerly unknown gamma ray sources and analyzing
    187 their energy spectra and temporal behavior. This became possible by
    188 lowering the energy threshold from 700\,GeV to less than 100\,GeV and
    189 increasing at the same time the sensitivity by a factor of five.
    190 
    191 To fully exploit the discovery potential of the improved sensitivity,
    192 the discovery of new, faint objects has become the major task for the
    193 new telescopes. A diversity of astrophysical source types such as
    194 pulsar wind nebulae, supernova remnants, microquasars, pulsars, radio
    195 galaxies, clusters of galaxies, gamma ray bursts, and blazers can be
    196 studied with these telescopes and limits their availability for
    197 monitoring purposes of well-known bright sources.
    198 
    199 There are strong reasons to make an effort for the continuous
    200 monitoring of the few exceptionally bright blazars. This can be
    201 achieved by operating a dedicated monitoring telescope of the
    202 HEGRA-type, referred to in the following as DWARF (Dedicated
    203 multiWavelength Agn Research Facility). The reasons are outlined in
    204 detail below.
    205 
    206 \textbf{The science case:} The variability of blazars, seen across the
    207 entire electromagnetic spectrum, arises from the dynamics of
    208 relativistic jets and the particle acceleration going on in them. The
    209 jets are launched from the vicinity of accreting supermassive black
    210 holes, and theoretical models predict variability arising from the
    211 interplay between jet expansion, particle injection, acceleration and
    212 cooling.\\
    213 
    214 Long-term monitor observations of bright blazars are the key to obtain
    215 a solid and complete data base for variability investigations.
    216 
    217 {\bf Hier sollte ganz klar rauskommen was der aktuelle Stand der
    218 Forschung ist und wieso man um weiter zu kommen unbedingt ein
    219 long-term monitoring IACT braucht}
    220 
    221 {\bf Geigermode APDs?}
    222 
    223 \subsubsection{High energy gamma and neutrino sources}
    224 
    225 {\bf Aus den folgenden beiden Abschnitten kann man vielleicht einen
    226 (k"urzeren) machen?}
    227 
    228 The TeV photon astronomy succeeded in discovering {\bf 14}
    229 extragalactic and {\bf ???} galactic objects at the sky during the past
    230 decades. Additionally there are two diffuse regions within our galaxy
    231 which have been detected by H.E.S.S.\cite{Aharonian:2006} and Milagro
    232 \cite{Milagro:2007}.
    233 %The first source was discovered in the
    234 %year 19{\bf??} by the {\bf HEGRA} collaboration {\it (War das nicht wer
    235 %anders, die zu allererst den Crab sahen?...ZITAT?)}.
    236 In comparison to
    237 x-ray measurments, which are able to scan the entire sky for sources
    238 and thus have cataloged more than {\bf 1000 ???} sources, this number
    239 appears to be quite small. One reason for this is the small field of
    240 view of imaging air cherenkov telesopes (IACTs), another reason the
    241 absorption of the TeV photon signal of distant ($z>0.2$) sources due to
    242 extragalactic background light (EBL). Due to this small statistic at
    243 the moment it is of particular importance that instruments with high
    244 sensitivity concentrate on the observation of new objects in the TeV sky
    245 and not on the quantitative, permanent observation of already known
    246 sources.
    247 % BRAUCHT MAN DEN FOLGENDEN ABSATZ WIRKLICH
    248 %Even when a source was observed over a longer period of time
    249 %this does mean {\bf  less than three month ???? {\it Viel l"anger sind
    250 %die Quellen am St"uck doch gar nicht sichtbar, oder? Sinnvoller w"are
    251 %es wom"oglich die wenigen Beobachtungsstunden in diesen X Monaten
    252 %hervorzuheben.}} But one has to take into account that during this time
    253 %also periods of bad weather and times with strong moon light can
    254 %significantly reduce  observation time. Furthermore one has to consider
    255 %that the sources are visible in the sky only for a few hours each night.
    256 
    257 %{\bf Ist die Aufz"ahlung nich total "ubertrieben? Ist es f"ur unseren
    258 %Antrag wirklich interessant welchem Typ die detektierten AGN angeh"oren
    259 %und  wie sie hei"sen?}
    260 
    261 The so far observed galactic objects are microqasars and supernova
    262 remnands (SNR). The identified extragalactic sources are active
    263 galactic nuclei (AGN).
    264 %NOETIG??? The objects are listed in table~\ref{dummy} {\bf
    265 %TESHIMAS VORTRAG IN MADISON}.
    266 The AGN are 13 BLLacs and one FR-I
    267 galaxy, M87. So High-peaked BL Lacertae objects are the prime source
    268 population for studies with Cherenkov telescopes. It is obvious that
    269 monitoring observations of strong blazars are orthogonal to the mission
    270 of the larger Cherenkov telescopes with their discovery potential for
    271 new sources (luminosity function, redshift distribution).
    272 {\bf Das hatten wir oben eigtnlich schonmal}
    273 
    274 In case of hadronic particle acceleration within the TeV emitters, the
    275 signal may arise from $\pi^0$-decays. These neutral pions are decay
    276 products of delta resonances, which are formed in proton-photon
    277 interactions. Another decay channel of the delta resonance leads to the
    278 production of charged pions and thus to neutrino production, coincident
    279 with the TeV photons. Therefrom TeV sources are always
    280 interesting objects for investigations with high energy neutrino
    281 telescopes.
    282 
    283 The strong variability in the temporal evolution of the AGN TeV photon
    284 spectra cannot be explained conclusively yet, {\it warum braucht man
    285 f"ur die Untersuchung Langzeitbeobachtungen?}
    286 
    287 {\bf SENSITIVIT\"ATSPLOT, Was hat der hier zu suchen?, Aber irgendwo muessen
    288 wir noch glaubhaft machen dass unsere Sensitivit"at ausreicht}\\
    289 {\bf TABELLE QUELLEN, Was bringt das f"ur den Antrag oder den Referee?}\\
    290 {\bf AGN Physik kann man nicht ohne die unteren Paragraphen erkl"aren,
    291 Muss man die hier erkl"aren? Wir m"ussen nur deutlich machen warum wir
    292 Langzeitbeobachtungen brauchen, nicht, dass wir die Physik verstehen}\\
    293 {\it Die Frage ist, ob man galaktische Quellen mit in die
    294 Langzeit-Beobachtung nehmen will, dann mu"s man das einzeln
    295 durchgehen. Ich bau die Argumentation gerade nur auf AGN auf,
    296 keine galaktischen Quellen!}
    297 
    298 \begin{itemize}
    299 \item Welche Quellen wurden oberhalb von 1 TeV bislang beobachtet?
    300 \item Welche Sensitivit"at braucht man?
    301 \item $\to$ Hier muesste doch der Abschnitt aus Ziele und ein Verweis
    302 darauf reichen, das HEGRA die Quellen detektiert hat und wir besser
    303 sein werden, oder?
    304 \end{itemize}
    305 
    306 \paragraph{Physikalische Modelle}
    307 Erkl"are die verschiedenen Szenarien:
    308 {\bf Ist das wirklich n"otig. Da sollten doch referenzen reichen...
    309 das ist ja wirklich nichts aktuelles!}
    310 \begin{itemize}
    311 \item Inverse Compton
    312 \item Proton Synchrotron
    313 \item Pion decay
    314 \end{itemize}
    315 
    316 Unterschiede darstellen: Pion bump ist nicht so Spitz; Inverse Compton:
    317 wenn man den 2. bump erh"oht, erh"oht sich automatisch auch der
    318 erste; oft widerspruch zu den Daten. Ich glaube, Proton Synchrotron hat
    319 das Problem nicht so, und auch Pion Zerfall nat"urlich nicht.
    320 
    321 Au"serdem: Stand der Dinge, um die Variabilit"at zu erkl"aren
    322 {\bf (Wichtig?) }
    323 
    324 \paragraph{Ergebnisse von Multiwavelangth-Kampangen}
    325 {\it hier m"ussen die verschiedenen Szenarien - inverse Compton von
    326 elektronen/ proton Synchrotron und Pion-Zerf"alle an Einzelf"allen
    327 diskutiert werden. Es gibt Bsp., bei denen Inverse Compton sehr gut
    328 klappt; dann gibt's welche, wo das gar nicht hinhaut. Einen Fall
    329 gibt's, wo Integral-Daten "uberhaupt nicht ins Bild passen. Da gibts
    330 z.B. ein Papier von Aharonian zu auf astro-ph - irgendwann aus den
    331 letzten 3 Monaten.}
    332 
    333 Experimente erw"ahnen: EGRET, COMPTEL, Integral, H.E.S.S., MAGIC, wer
    334 noch???  f"ur bisherige Spektren; GLAST zum F"ullen der L"ucke!!!
    335 
    336 Auch hier: Diskussion der Variabilit"at; ``Orphan Flares''...
    337 
    338 \paragraph{Die Photon-Neutrino-Verbindung}
    339 {\bf Steht das nicht oben schon {\em AGNs are interstng
    340 Targets for Neutrino Teleskops}?}
    341 
    342 \subsection{Eigene Vorarbeiten/Preliminary work by proposer}
    343 
    344 {\em
    345 \begin{itemize}
    346 \item Vollst"andige und konkrete Darstellung der eigenen Vorarbeiten
    347 \item Fremde/eigene Literatur kennzeichenen (ggf. \"im Druck\")
    348 \item Relevante wissenschaftl. Ver"offentlichung der letzen f"unf Jahre
    349 \item Relavante Vor"offentlichung beif"ugen
    350 \end{itemize}
    351 }
    352 
    353 Hie sollte was stehen zu (Ich denke der Abschnitt ist wichtig um zu
    354 zeigen, dass man auch leisten kann was man verspricht)
    355 \begin{itemize}
    356 \item Aufbau von Drive und Starguider (W"urzburg)
    357 \item Erfahrungen mit Spiegeln (Dr"oge, W"urzburg)
    358 \item Erfahrungen mit PMTs/HV (Dortmund)
    359 \item Erfahrungen mit HPDs (W"urzburg)
    360 \item Die modulare und powerfull Analyse Software (W"urzburg)
    361 \item Das bestreben die MCs modular umzuschreiben (W"urzburg, Dortmund?)
    362 \item Erfahrungen mit MCs: Unfolding, Athmosphaere, Corsika? (Dortmund)
    363 \item Die Automatisierung der Analyse und MCs, wichtig! (W"urzburg)
    364 \item Neutrino Studien, um zu zeigen, dass die angestrebten
    365 Korrelationen auch wirklich von jemandem ausgewertet werden k"onnen
    366 (Dortmund)
    367 \item Multi-Wellenl"angen Kampagnen (Suzaku, Swift), W"urzburg/Dortmund?
    368 \item Bestehende Monitoring Proposal (MAGIC)
    369 \item Die SSC Modellrechnungen aus W"urzburg
    370 \item LISA? (W"urzburg)
    371 \end{itemize}
    372 
    373 
    374 \subsubsection{Beteiligung an Experimenten}
    375 
    376 \paragraph{MAGIC}
    377 
    378 \paragraph{IceCube}
    379 
    380 The Dortmund group is IceCube member and working since years on
    381 phenomenological calculations and data analysis of possible
    382 coincidences between VHE-gamma and neutrino-emission. \\
    383 
    384 The available automatic analysis package developed by the W"urzburg
    385 group for MAGIC is modular and flexible, and can thus be used with
    386 minor changes for the DWARF project.\\
    387 
    388 Monte Carlo production and storage will take place at Universit"at
    389 Dortmund Monte-Carlo-Erfahrung Dortmund $\to$ Marijkes Diplomarbeit
    390 
    391 A microcontroller based motion control unit (SPS) similar to the one of
    392 the current MAGIC II drive system will be used.\\
    393 $\to$DriveSystem-Erfahrung W"urzburg
    394 
    395 To correct for axis misalignments and possible deformations of the
    396 structure (e.g. bending of camera holding masts) a pointing correction
    397 algorithm as used in the MAGIC tracking system will be applied. It is
    398 calibrated by measurement of the reflection of bright guide stars on
    399 the camera surface and ensures a pointing accuracy well below the pixel
    400 diameter. \\ $\to$ Diplomarbeit Benjamin Riegel (W"urzburg)
    401 
    402 \section[3.1]{Ziele/Goals}
    403 
    404 \subsection{Ziele/Goals}
    405 
    406 {\em
    407 \begin{itemize}
    408 \item Gestraffte Darstellung des wissenschaftlichen Programs und Zielsetzung
    409 \item Ich denke das ist eine Art Abstract des Arbeitsprogramms.
    410 \end{itemize}
    411 }
    412 
    413 The present application aims at putting the former CT3 of the HEGRA
    414 collaboration on the Roque de los Muchachos back into operation - with
    415 an enlarged mirror surface and a new camera and data taking, under the
    416 name of DWARF. The sensitivity above  500\,GeV of this new instrument
    417 will thus correspond with the one of the also disused  Whipple
    418 telescope. \textbf{WHIPPLE wird aber noch benutzt!!!}
    419 
    420 The layout of the telescope shall be carried out modular in such a
    421 sense that components of future telescopes (mirror, camera, DAQ) can be
    422 tested and optimized at this bodywork.
    423 
    424 %Wissenschaftlich sollen folgende Punkte realisiert werden:
    425 With the upgraded instrument the following scientific aims shall be
    426 realized:
    427 
    428 \begin{enumerate}
    429 \item Long-term observations of temporal variations of TeV gamma
    430 ray sources.\\
    431 An understanding of this variability will deepen our knowledge about
    432 
    433   \begin{itemize}
    434   \item the composition and generation of the jets, intimately connected
    435 to the physics of the ergosphere of rapidly spinning black holes
    436 embedded into the hot plasma from the accretion flow.
    437   \item the plasma physics responsible for highly efficient particle
    438 acceleration, bearing similarities to plasma physics of the interaction
    439 between extremely intense laser beams and matter.
    440   \item {the orbital modulation of jets due to binary black holes
    441 expected from galaxy merger models.\\ \textbf{the search for signatures of
    442 binary black hole systems from orbital modulation of VHE gamma ray
    443 emission} \cite{Rieger:2000, Rieger:2001}\\
    444 \item {\bf Wird das nicht ein bisschen viel Rieger?
    445 \item Rieger; Periodic variability and binary black hole systems in blazars
    446 \item Rieger; Supermassive binary black holes among cosmic gamma-ray sources
    447 \item Rieger; On the geometric origin of periodicity in blazar-type sources
    448 }}
    449   \end{itemize}
    450 
    451 Long-term monitor observations of bright blazars are the key to obtain
    452 a solid data base for variability investigations. Assuming
    453 conservatively the performance of a single HEGRA-type telescope,
    454 long-term monitoring of at least the following blazars is possible:
    455 Mrk421, Mrk501, 1ES 2344+514, 1ES 1959+650, H 1426+428, PKS 2155-304.
    456 We emphasize that DWARF will run as a facility dedicated to these
    457 targets only, providing a maximum observation time for the program.
    458 \textbf{\textit{oder ist dieser Abschnitt doch besser in 3.2.
    459 aufgehoben?!}}
    460 
    461 \item Coincident observations with gamma telescopes in different
    462 energy ranges:\\ Flux variations will be determined and compared with
    463 variability properties in other wavelength ranges.
    464 
    465 \item Coincident observations with the neutrino telescope
    466 IceCube:\\ Hadronic emission processes and possible coincidences
    467 between VHE-gamma and neutrino-emission will be studied.
    468 
    469 \item Furthermore, we seek to obtain know-how for the operation
    470 of future networks of Cherenkov telescopes (e.g. a monitoring array
    471 around the globe or CTA) or telescopes at inaccessible sites.
    472 \end {enumerate}
    473 
    474 \subsection{Arbeitsprogramm/Work schedule}
    475 
    476 {\em
    477 \begin{itemize}
    478 \item Detaillierte Angaben "uber Vorgehen w"ahrend der Laufzeit
    479 \item Hauptkriterium f"ur die Genehmigung
    480 \item Halber Antrag
    481 \item Warum welche Mittel f"ur was beantragt werden
    482 \item Welche Methoden stehen zur Verf"ugung
    483 \item Welche Methoden m"ussen entwickelt werden
    484 \item Welche Hilfe von au"serhalb der eigenen Arbeitsgruppe ist notwendig
    485 \end{itemize}
    486 }
    487 
    488 At least one of the proposed targets will be visible any time of the
    489 year (see plot/appendix). For calibration purposes, some time will be
    490 scheduled for observations of the Crab nebula, which is the brightest
    491 known VHE emitter with constant flux.\\
    492 
    493 In detail the following investigations are planned:
    494 \begin{itemize}
    495 \item As direct result of the measurements, the duty cycle, the
    496 baseline emission, and the power spectrum of flux variations will be
    497 determined and compared with variability properties in other wavelength
    498 ranges.
    499 
    500 \item The lightcurves will be interpreted using models for the
    501 nonthermal emission from relativistically expanding plasma jets. In
    502 particular models currently developed in the context of the Research
    503 Training Group "Theoretical Astrophysics" in W"urzburg
    504 (Graduiertenkolleg, GK1147) shall be used. Particle acceleration is
    505 studied with hybrid MHD and particle-in-cell methods.
    506 
    507 \item The black hole mass and accretion rate will be determined from
    508 the emission models. Estimates of the black hole mass from emission
    509 models, a possible orbital modulation, and the Magorrian relation
    510 (relating the black hole mass with the stellar bulge mass of the host
    511 galaxy) will be compared. \cite{Rieger:2003} {\bf eigentlich ist das
    512 nicht mehr die Stelle mit Zitaten sondern die wo wir sagen, dass
    513 wir das Know-how - in Form von Frank - haben.}
    514 
    515 \item \textbf{To achieve a maximal database for these studies the
    516 observation  schedule will be arranged together with the one for
    517 Whipple. (Letter of  support?) ($\rightarrow$ collaboration with
    518 Veritas)}
    519 
    520 \item When flaring states will be discovered during the monitor
    521 program, MAGIC will issue a Target of Opportunity observation to obtain
    522 better time resolution (Letters of support?). Corresponding
     540\item to determine the duty cycle, the baseline emission, and the power
     541spectrum of flux variations.
     542\item to cooperate with the Whipple monitoring telescope for an
     543extended time coverage.
     544\item to prompt Target of Opportunity (ToO) observations with MAGIC in
     545the case of flares increasing time resolution. Corresponding
    523546Target-of-Opportunity (ToO) proposals to H.E.S.S.\ and Veritas are in
    524547preparation.
    525 
    526 \item DWARF observations will be combined with simultaneous MAGIC
    527 observations. By this kind of observation the energy range of the MAGIC
    528 telescope can be stretched to higher energies. This in turn leads to
    529 the so far unique possibility to cover an energy range of tens of GeV
    530 to several tens of TeV at the same time allowing the study of the
    531 inverse compton peaks as well as absorption due to EBL simultaneously.
    532 By a software coincidence trigger the sensitivity in the overlapping
    533 energy region might be improved further.
    534 
    535 \item Correlating the arrival times of neutrinos detected by the
    536 neutrino telescope IceCube with simultaneous measurements of DWARF will
    537 allow to test the hypothesis that flares in blazar jets are connected
    538 to hadronic emission processes and thus to neutrino emission from these
    539 sources. The investigation proposed here is complete for both, neutrino
    540 and gamma observations, and can therefore lead to conclusive results.
    541 
    542 \item The diffusive fluxes of escaping UHE cosmic rays obtained from
    543 AUGER or flux limits of neutrinos from IceCube, respectively, will be
    544 used to constrain models of UHE cosmic ray origin and large-scale
    545 magnetic fields.
    546 
    547 \item Multi-frequency observations together with the Mets"ahovi Radio
    548 Observatory and the optical Tuorla Observatory are planned (Letters of
    549 support appendix). The measurements will be correlated with INTEGRAL
    550 and GLAST results, when available. X-ray monitoring using the SWIFT and
    551 Suzaku facilities will be proposed.
    552 
    553 \item The most ambitious scientific goal of this proposal is the search
    554 for signatures of binary black hole systems from orbital modulation of
    555 VHE gamma ray emission. In case of a confirmation of the present hints
    556 in the temporal behaviour of Mrk501, gravitational wave templates could
    557 be computed with high accuracy to establish their discovery with LISA
    558 (PhD project at W"urzburg funded by the German LISA consortium).
     548\item to observe simultaneously with MAGIC which will provide an
     549extended bandwidth from below 100\,GeV to multi-TeV energies.
     550\item to obtain multi-frequency observations together with the
     551Mets"ahovi Radio Observatory and the optical Tuorla Observatory
     552(Letters of support appendix). The measurements will be correlated with
     553INTEGRAL and GLAST results, when available. x-ray monitoring using the
     554SWIFT and Suzaku facilities will be proposed.
    559555\end{itemize}
    560556
    561 \textbf{The technical setup:} At the Observatorio de los Muchachos
    562 (ORM), at the MAGIC site, the mount of the former HEGRA telescope CT3
    563 now owned by the MAGIC collaboration is still operational. One hut for
    564 electronics close to the telescope is available. Additional space is
    565 available in the MAGIC counting house.  The MAGIC Memorandum of
    566 Understanding allows for operating it as an auxiliary instrument, and
    567 basic support from the shift crew of MAGIC is guaranteed, although
    568 robotic operation is the primary goal. Robotic operation is necessary
    569 to reduce costs and man power demands. \textbf{Besides it reduces air
    570 pollution by significantly reducing traveling.} Furthermore, we seek to obtain
    571 know-how for the operation of future networks of Cherenkov telescopes
    572 (e.g. a monitoring array around the globe or CTA) or telescopes at
    573 inaccessible sites. From the experience with the construction and
    574 operation of MAGIC or HEGRA, respectively, the proposing groups
    575 consider the planned focused approach (small number of experienced
    576 scientists) as optimal for achieving the project goals. The available
    577 automatic analysis package developed by the W"urzburg group for MAGIC
    578 is modular and flexible, and can thus be used with minor changes for
    579 the DWARF project. Therefore construction, commissioning and operation
    580 of a small scale Cherenkov telescope are best suitable for education
    581 and training of students by experienced scientists.
     557Interpretation of the data will yield crucial information about
     558\begin{itemize}
     559\item the nature of the emission processes going on in relativistic
     560jets. We plan to interpret the data with models currently developed in
     561the context of the Research Training Group {\em Theoretical
     562Astrophysics} in W"urzburg (Graduiertenkolleg, GK\,1147), including
     563particle-in-cell and hybrid MHD models.
     564\item the black hole mass and accretion rate fitting the data with
     565emission models.  Results will be compared with estimates of the black
     566hole mass from  the Magorrian relation.
     567\item the flux of relativistic protons (ions) by correlating the rate
     568of neutrinos detected with the neutrino telescope IceCube and the rate
     569of gamma ray photons detected with DWARF, and thus the rate of escaping
     570cosmic rays.
     571\item the orbital modulation owing to a supermassive binary black hole.
     572Constraints on the binary system will allow to compute most accurate
     573templates of gravitational waves, which is a connected project at
     574W"urzburg in the German LISA consortium funded by DLR.
     575\end{itemize}
     576
     577\subsection{Arbeitsprogramm/Work schedule}
    582578
    583579To complete the mount to a functional Cherenkov telescope within a
    584580period of one year, the following steps are necessary:
    585581
    586 \paragraph{Camera:}
    587 For long-term observations stability of the camera is a major
    588 criterion. To keep the systematic errors small good background
     582The work schedule assumes that the work will begin in January 2008,
     583immediately after funding. Later funding would accordingly shift the
     584schedule. Each year is divided into quarters (see figure xxx).
     585
     586\paragraph{Software}
     587\begin{itemize}
     588\item MC adaption (Do/Wue): Due to the large similarities with the MAGIC telescope, within half a year new Monte Carlo code can be programmed using parts of the existing MAGIC Monte Carlo code. For tests and cross-checks another period of six months is necessary.
     589\item Analysis adaption (Wue): The modular concept of the Magic Analysis and Reconstruction Software (MARS) allows a very fast adaption of the telescope setup, camera and data acquisition properties within half a year.
     590\item Adaption Drive software (Wue): Since the new drive electronics will be based on the design of the MAGIC II drive system the control software can be reused unchanged. The integration into the new slow control system will take about half a year. It has to be finished at the time of arrival of the drive system components in 2009/1.
     591\item Slow control/DAQ (Do): A new data acquisition and slow control system for camera and auxiliary systems has to be developed. Based on experiences with the AMANDA DAQ, the Domino DAQ developed for MAGIC II will be adapted and the slow control integrated within three quarters of a year. Commissioning will take place with the full system in 2009/3.
     592\end{itemize}
     593
     594\paragraph{Mirrors (Wue)} First prototypes for the mirrors are already available. After testing (six months), the production will start in summer 2008 and shipment will be finished before the full system assembly 2009/2.
     595\paragraph{Drive (Wue)} After a planning phase of half a year to simplify the MAGIC II drive system for a smaller telescope (together with the delivering company), ordering, production and shipment should be finished in 2009/1. The MAGIC I and II drive systems have been planned and implemented successfully by the Wuerzburg group.
     596\paragraph{Auxiliary (Wue)} Before the final setup in 2009/1, all auxiliary systems (weather station, computers, etc.) will have been specified, ordered and shipped.
     597\paragraph{Camera (Do)} The camera has to be ready six month after the shipment of the other mechanical parts of the telescope. For this purpose camera tests have to take place in 2009/2, which requires the assembly of the camera within six months before. By now, a PM test bench which allows to finish planning and ordering of the camera parts and PMs until summer 2008, before the construction begins, is set up in Dortmund. In addition to the manpower permanently provided by Dortmund for production and commissioning, two engineers will participate in the construction phase.
     598\paragraph{Full System (Do/Wue)} The full system will be assembled after delivering of all parts in the beginning of spring 2009. Start of the commissioning is planned four months later. First light is expected in autumn 2009. This would allow an immediate full system test with a well measured, strong and steady source (CrabNebula). After the commissioning phase will have been finished in spring 2010, full robotic operation will be provided.
     599
     600Based on the experience with setting up the MAGIC telescope we estimate
     601this workschedule as conservative.
     602
     603\subsubsection[3.3]{Experiments with humans (Untersuchungen am Menschen)}
     604none
     605\subsubsection[3.4]{Experiments with animals (Tierversuche)}
     606none
     607\subsubsection[3.5]{Experiments with recombinant DNA (Gentechnologische Experimente)}
     608none
     609
     610\section[4]{Beantragte Mittel/Funds requested}
     611
     612We request funding for a total of three years. Summarizing, the
     613expenses for the telescope (see section xxx) are dominated by the
     614camera and data acquisition. The financial volume for the complete
     615hardware inclusive transport amounts to 372.985\,\euro.
     616
     617\subsection[4.1]{Required Staff (Personalbedarf)}
     618
     619For this period, we request funding for two postdocs and two PhD
     620students, one in Dortmund and one in W"urzburg each.
     621
     622The staff members shall fulfill the tasks given in the work schedule
     623above. To cover these tasks completely, one additional PhD student per
     624group and a various number of Diploma students will complete the
     625working group
     626
     627Suitable candidates interested in these positions are Dr.\ Thomas
     628Bretz, Dr.\ dest.\ Daniela Dorner, Dr.\ dest.\ Kirsten M"unich, cand.\
     629phys.\ Michael Backes, cand.\ phys.\ Daniela Hadasch and cand.\ phys.\
     630Dominik Neise.
     631
     632\subsection[4.2]{Scientific equipment (Wissenschaftliche Ger"ate)}
     633
     634Support: At the Observatorio de los Muchachos (ORM), at the MAGIC site,
     635the mount of the former HEGRA telescope CT3 now owned by the MAGIC
     636collaboration is still operational. One hut for electronics close to
     637the telescope is available. Additional space is available in the MAGIC
     638counting house. The MAGIC Memorandum of Understanding allows for
     639operating it as an auxiliary instrument (see appendix), and emergency
     640support from the shift crew of MAGIC is guaranteed, although autonomous
     641robotic operation is the primary goal.
     642
     643To achieve the planned sensitivity and threshold given in fig.\
     644\ref{sensitivity} the following components have to be bought. To obtain
     645reliable results as fast as possible well known components have been
     646chosen.\\
     647
     648\begin{figure}[hb]
     649\centering{
     650\includegraphics[width=0.8\textwidth]{sensitivity.eps}
     651\caption{Integral flux sensitivity of current and former Cherenkov
     652telescopes
     653\citep{Moralejo:2004,Juan:2000,MAGICsensi,Magnussen:1998,Vassiliev:1999}
     654as well as the expectations for DWARF, with both a
     655PMT- and an APD-camera. These expectations are based on the sensitivity of
     656the HEGRA CT1 telescope, scaled by the improvements mentioned in the text.
     657}
     658\label{sensitivity}
     659}
     660\end{figure}
     661
     662{\bf Camera}\dotfill 207.550,00\,\euro\\[-3ex]
     663\begin{quote}
     664   To setup a camera with 313 pixels the following components are needed:\\
     665   \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
     666   Photomultiplier Tube EMI\,9083 KFLA-UD\hfill 220,00\,\euro\\
     667   Active voltage divider ({\bf !!!!})\hfill 80,00\,\euro\\
     668   High voltage support and control\hfill {\bf 300,00}\,\euro\\
     669   Preamplifier\hfill 50,00\,\euro\\
     670   Spare parts (overall)\hfill 3000,00\,\euro\\
     671   \end{minipage}\\[-0.5ex]
     672%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
     673For long-term observations, the stability of the camera is a major
     674criterion. To keep the systematic errors small, a good background
    589675estimation is mandatory. The only possibility for a synchronous
    590676determination of the background is the determination from the night-sky
    591677observed in the same field-of-view with the same instrument. To achieve
    592 this the observed position is moved out of the camera center which
     678this, the observed position is moved out of the camera center which
    593679allows the estimation of the background from positions symmetric with
    594680respect to the camera center (so called wobble-mode). This observation
    595 mode increases the sensitivity by a factor of two \textbf{$\sqrt{2}$?} because spending
    596 observation for dedicated background observations becomes obsolete,
    597 which also ensures a better time coverage of the observed sources.
    598 Having a camera large enough allowing more than one independent
    599 position for background estimation increases sensitivity further by
    600 better background statistics. This is the case if the source can be
    601 shifted 0.6deg-0.7deg out of the camera center. A camera completely
    602 containing shower images of events in the energy region of 1TeV-10TeV
    603 should have a diameter in the order of 5 deg. To decrease the
    604 dependence of the background measurement on the camera geometry, a
    605 camera layout as symmetric as possible will be chosen. Consequently a
    606 camera allowing for wobble-mode observations should be round and have a
    607 diameter of 4.5deg-5.0deg.
    608 
    609 To achieve this requirements a 313 Pixel camera (see figure
    610 \ref{camDWARF}) will been build based on the experience with HEGRA and
    611 MAGIC. 19 mm diameter Photomultiplier Tubes (PM, EMI 4035) will be
    612 bought, similar to the HEGRA type (EMI\,9083\,KFLA). With a 20$\%$
    613 improved quantum efficiency they ensure a granularity which is enough
    614 to guarantee good results even below the energy threshold (flux peak
    615 energy). Each individual pixel has to be equipped with a preamplifier,
    616 an active high-voltage supply and control. The total expense for a
    617 single pixel will be in the order of 600 EURO.
    618 
    619 If development of geigermode APDs (QE$\ge$50$\%$) will be fast enough,
    620 respectively the price low enough, and their long term stability is
    621 proven well in time, their usage will be considered.
    622 
    623 For a transition time one of the old HEGRA cameras might be borrowed
    624 (see figure \ref{camCT3}). With a special coating (wavelength shifter)
    625 its quantum efficiency might be improved by ~8$\%$\cite{Paneque:2004}.
    626 \textbf{8\% sind f"ur flat-window-pmts angegeben... nach den Zeichnungen
    627 in z.B. German Hermanns Diss. sind sie aber nicht v"ollig flach...demnach
    628 k"onnten wir wohl 19\% zitieren.}
    629 \textbf{Figure?}
    630 
    631 \paragraph{Camera support:}
    632 The camera chassis must be water tight. An automatic lid protecting the
    633 PMs at day-time will be installed. For further protection a plexi-glass
    634 window will be installed in the front of the camera. By over-coating
    635 the window with an anti-reflex layer of magnesium-fluoride a gain in
    636 transmission of 5$\%$ is expected. Each PM will be equipped with a
     681mode increases the sensitivity by a factor of $\sqrt{2}$,
     682because spending observation time for dedicated background observations
     683becomes obsolete, i.e. observation time for the source is doubled. This
     684ensures in addition a better time coverage of the observed sources.
     685
     686A further increase in sensitivity can be achieved by better background
     687statistics from not only one but several independent positions for the
     688background estimation in the camera \citep{Lessard:2001}. For wobble mode
     689observations allowing for this, the source position should be shifted
     690$0.6^\circ-0.7^\circ$ out of the camera center.
     691%}
     692
     693\begin{figure}[ht]
     694\begin{center}
     695 \includegraphics*[width=0.4\textwidth,angle=0,clip]{cam271.eps}
     696 \includegraphics*[width=0.4\textwidth,angle=0,clip]{cam313.eps}
     697 \caption{Left: Schematic picture of the 271 pixel CT-3 camera with a field of view of 4.6$^\circ$.
     698 Right: Schematic picture of the 313 pixel camera for DWARF with a field of view of 5$^\circ$.}
     699\label{camCT3}
     700\label{camDWARF}
     701\end{center}
     702\end{figure}
     703
     704A camera completely containing shower images of events in the energy
     705region of 1\,TeV-10\,TeV should have a diameter in the order of
     7065$^\circ$. To decrease the dependence of the measurements on the camera
     707geometry, a camera layout as symmetric as possible will be chosen.
     708Consequently a camera allowing to fulfill these requirements should be
     709round and have a diameter of $4.5^\circ-5.0^\circ$.
     710
     711Therefor a camera with 313 Pixel camera (see figure \ref{camDWARF}) is
     712chosen. The camera will be built based on the experience with HEGRA and
     713MAGIC. 19\,mm diameter Photomultiplier Tubes (PM, EMI\,9083\,KFLA-UD)
     714will be bought, similar to the HEGRA type (EMI\,9083\,KFLA). They have
     715a 25\% improved quantum efficiency and ensure a granularity which is
     716enough to guarantee good results even below the energy threshold (flux
     717peak energy). Each individual pixel has to be equipped with a
     718preamplifier, an active high-voltage supply and control. The total
     719expense for a single pixel will be in the order of 650\,\euro.
     720
     721All possibilities of borrowing one of the old HEGRA cameras for a
     722transition time have been probed and refused by the owners of the
     723cameras.
     724\end{quote}\vspace{3ex}
     725
     726{\bf Camera support}\dotfill 204.000,00\,\euro\\[-3ex]
     727\begin{quote}
     728For this setup the camera holding has to be redesigned. (1500\,\euro)
     729The camera chassis must be water tight and will be equipped with an
     730automatic lid protecting the PMs at day-time. For further protection, a
     731plexi-glass window will be installed in front of the camera. By coating
     732this window with an anti-reflex layer of magnesium-fluoride, a gain in
     733transmission of {\bf 5\%} is expected. Each PM will be equipped with a
    637734light-guide (Winston Cone) as developed by UC Davis and successfully in
    638 operation in the MAGIC camera. (3000 EURO). The current design will be
    639 improved by using a high reflectivity aluminized Mylar mirror-foil,
    640 overcoated with a dialectical layer (SiO2 alternated with Niobium
    641 Oxide), to reach a reflectivity in the order of 98$\%$. In total this
    642 will gain ~15$\%$ in light-collection efficiency compared to the old
    643 CT3 system.
    644 
    645 For this setup the camera holding has to be redesigned. (1500\,Eur?)
    646 
    647 An electric and optical shielding of the individual PMs is planned.
    648 
    649 The mechanical work is done at Universit"at Dortmund.
    650 
    651 \paragraph{Data acquisition:}
     735operation in the MAGIC camera. (3000\,\euro\ for all winston cones). The
     736current design will be improved by using a high reflectivity aluminized
     737Mylar mirror-foil, coated with a dialectical layer ($Si\,O_2$
     738alternated with Niobium Oxide), to reach a reflectivity in the order of
     739{\bf 98\%}. An electric and optical shielding of the individual PMs is
     740planned.
     741
     742In total a gain of {\bf $\sim$ 15\%} in light-collection
     743efficiency compared to the old CT3 system can be acheived.
     744\end{quote}\vspace{3ex}
     745
     746{\bf Data acquisition}\dotfill 61.035,00\,\euro\\[-3ex]
     747\begin{quote}
     748313 pixels a\\
     749   \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
     750   Readout\hfill 95,00\,\euro\\
     751   Trigger\hfill 100,00\,\euro\\
     752   \end{minipage}\\[-0.5ex]
     753%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
    652754For the data acquisition system a hardware readout based on an analog
    653 ring buffer (Domino II/III), currently developed for the MAGIC II
    654 readout, will be used. This technology allows sampling the pulses with
    655 high frequencies and allows to readout several channels with a single
    656 Flash-ADC resulting in low-costs. The low power consumption will allow
    657 including the digitization near the signal source which makes an analog
    658 signal transfer obsolete. The advantage is less pick-up noise and less
    659 signal dispersion. By high sampling rates (0.5\,GHz-1.2\,GHz) additional
    660 information about the pulse shape can be obtained. This increasing the
    661 over-all sensitivity further, because the short integration time allows
    662 for almost perfect suppression of noise due to night-sky background
    663 photons. The estimated trigger- (readout-) rate of the telescope is
    664 below 100\,Hz (HEGRA: $<$10\,Hz) which allows to use a low-cost industrial
    665 solution for readout of the system like USB\,2.0. (30.000-45.000:
    666 95-145/channel).
    667 
    668 {\bf Current result obtained with the new 2\,GHz FADC system
    669 in the MAGIC dat aacquisition show that for a single telescope
    670 a sensitivity improvement with a fast FADC system is achievable.}
    671 
    672 As for the HEGRA telescopes a simple multiplicity trigger is enough,
     755ring buffer (Domino\ II/III), currently developed for the MAGIC\ II
     756readout, will be used \citep{Barcelo}. This technology allows to sample
     757the pulses with high frequencies and readout several channels with a
     758single Flash-ADC resulting in low costs. The low power consumption will
     759allow to include the digitization near the signal source which makes
     760the transfer of the analog signal obsolete. The advantage is less
     761pick-up noise and less signal dispersion. By high sampling rates
     762(1.2\,GHz), additional information about the pulse shape can be
     763obtained. This increases the over-all sensitivity further, because the
     764short integration time allows for almost perfect suppression of noise
     765due to night-sky background photons. The estimated trigger- (readout-)
     766rate of the telescope is below 100\,Hz (HEGRA: $<$10\,Hz) which allows
     767to use a low-cost industrial solution for readout of the system like
     768USB\,2.0.
     769
     770%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
     771Current results obtained with the new 2\,GHz FADC system in the MAGIC
     772data acquisition show that for a single telescope a sensitivity
     773improvement 40$\%$ with a fast FADC system is achievable \citep{Tescaro:2007}.
     774
     775As for the HEGRA telescopes a simple multiplicity trigger is sufficient,
    673776but also a simple three-next-neighbors (closed package) could be
    674 programmed. ($<$30.000: $<$100/channel).
    675 
    676 To guarantee a homogenous trigger setup over the whole camera the
    677 individual pixel rates, dominated by night-sky noise, will be monitored
    678 and kept constant.
     777programmed. (both cases $\sim$30.000\,Eur: $<$100\,Eur/channel).
    679778
    680779Additional data reduction and preprocessing in the readout hardware or
    681780the readout computer is provided. Assuming conservatively storage of
    682781raw-data at a readout rate of 30\,Hz the storage space needed is less
    683 than 250\,GB/month or 3\,TB/year. This amount of data can easily be stored
    684 and processed by the W"urzburg Datacenter (current online capacity
    685 $>$20\,TB, offline capacity $>$30\,TB, $>$16\,CPUs). To archive the data
    686 safely 25 tapes (LTO3 with 400\,GB each, $\sim$1000\,Eur) and a SATA
    687 disk-array ($\sim$4000\,Eur) will be bought.
    688 
    689 \paragraph{On-site computing:}
    690 For on-site computing less than three standard PCs are needed
    691 ($\sim$8.000\,Eur). This includes readout and storage, preprocessing,
    692 and telescope control. For safety reasons a firewall is mandatory. For
    693 local storage and backup two RAID\,5 SATA disk arrays with less than one
    694 Terabyte capacity each will fulfill the requirement ($\sim$4.000\,Eur).
    695 The data will be transmitted as soon as possible after data taking via
    696 Internet to the W"urzburg Datacenter.
    697 
    698 Monte Carlo production and storage will take place at Universit"at
    699 Dortmund
    700 
    701 For the absolute time necessary for an accurate source tracking a GPS
    702 clock will be bought.
    703 
    704 \paragraph{Mount and Drive:}
    705 The present mount is used. Only a smaller investment for safety,
    706 corrosion protection, cable ducts, etc. is needed (7.500).
    707 
    708 For movement motors, shaft encoders and control electronics in the
    709 order of 10.000 EURO have to be bought. The drive system should allow
    710 for relatively fast repositioning for three reasons: 1) Fast movement
    711 might be mandatory for future ToO observations. 2) Wobble-mode
    712 observations will be done changing the wobble-position continuously
    713 (each 20\,min) for symmetry reasons. 3) To ensure good time coverage  of
    714 more than one source visible at the same the observed source will be
    715 changed in constant time intervals ($\sim$20\,min). Therefore three 150
    716 Watt servo motors are intended. A microcontroller based motion control
    717 unit (SPS) similar to the one of the current MAGIC II drive system will
    718 be used. For communication with the readout-system a standard Ethernet
    719 connection based on the TCP/IP- and UDP-protocol is applied.
    720 
    721 \paragraph{Security:}
    722 An uninterruptible power-supply unit (UPS) with 5-10\,kW will be
    723 installed to protect the equipment against power cuts and ensure a safe
    724 telescope position at the time of sun-rise. ($<$2000\,Eur)
    725 
    726 \paragraph{Mirrors:}
     782than 250\,GB/month or 3\,TB/year. This amount of data can easily be
     783stored and processed by the W"urzburg Datacenter (current online
     784capacity $>$35\,TB, offline capacity $>$80\,TB, $>$26\,CPUs).
     785%}\\[2ex]
     786\end{quote}\vspace{3ex}
     787
     788{\bf Mirrors}\dotfill 15.000,00\,\euro\\[-3ex]
     789%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
     790\begin{quote}
    727791The existing mirrors are replaced by new plastic mirrors which are
    728 currently developed by the group of Wolfgang Dr"oge. The cheap and
    729 light-weight material has been formerly used for Winston cones flown in
    730 balloon experiments. The mirrors are copied from a master, coated with
    731 a reflecting and a protective material. Previous tests have given
    732 promising results. By a change of the mirror geometry the mirror area
    733 can be increased from 8.5\,m$^2$ to 13\,m$^2$ (see picture \ref{CT3} and
     792currently developed by Wolfgang Dr"oge's group. The cheap and
     793light-weight material has been formerly used for Winston cones in
     794balloon experiments. The mirrors are copied from a master coated with a
     795reflecting and a protective material. Tests have given promising
     796results. By a change of the mirror geometry, the mirror area can be
     797increased from 8.5\,m$^2$ to 13\,m$^2$ (see picture \ref{CT3} and
    734798montage \ref{DWARF}); this includes an increase of $\sim$10$\%$ per
    735 mirror by using a hexagonal layout. A further increase of the mirror
    736 area would require a reconstruction of parts of the mount and will
    737 therefore be considered only in later phase of the experiment.
    738 
    739 If the current development cannot be finished in time a re-machining of
    740 the old glass mirrors (8.5\,m$^2$) is possible with high purity aluminum
    741 and quartz coating. (Both cases: 30 mirrors, 10k, offer by L-Tec
    742 $\lesssim$500\,Eur/mirror * 30\,mirrors = 15.000\,Eur without transfer)
    743 
    744 \textbf{In both cases the mirrors can be coated with the same high
    745 reflectivity aluminized Mylar mirror-foil, and a dialectical layer of SiO2
    746 as for the Winston Cones (ref: Fraunhofer, private communication?). By this a
    747 gain in reflectivity of ~10\% is achieved.}
    748 
    749 To keep track of the alignment, reflectivity and optical
    750 quality of the individual mirrors, and the point-spread function of the
    751 total mirror, during long-term observations the application of an
    752 automatic mirror adjustment system, as developed by ETH Z"urich and
    753 successfully operated on the MAGIC telescope, is intended. The system
    754 will be provided by ETH Z"urich. (1.000 EURO/pannel)
    755 
    756 For a 3.5\,m \textbf{4\,m} diameter mirror the delay between an isochronous parabolic
    757 mirror and a spherical mirror at the edge is in the order of\textbf{well below} 1ns (see
    758 figure/appendix). For a sampling rate in the order of 2\,GHz a mirror
    759 mounting with a parabolic shape is not needed. Since their small size the
    760 individual mirrors can have a spherical shape.
    761 
    762 \paragraph{Telescope calibration:}
    763 
    764 Tracking: To correct for axis misalignments and possible deformations
    765 of the structure (e.g. bending of camera holding masts) a pointing
    766 correction algorithm as used in the MAGIC tracking system will be
    767 applied. It is calibrated by measurement of the reflection of bright
    768 guide stars on the camera surface and ensures a pointing accuracy well
    769 below the pixel diameter. Therefore a high sensitive low-cost video
    770 camera, as already in operation for MAGIC I and II, (300\,Eur camera,
    771 300\,Eur optics, 300\,Eur housing) will be installed.
    772 
    773 PM Gain: For the calibration of the PM gain a calibration system as
    774 used for the MAGIC telescope is build. (2.000\,Eur)
    775 
    776 Summarizing, the expenses for the telescope are dominated by the camera
    777 and DAQ. The financial volume for the complete hardware inclusive
    778 transport amounts roughly 400.000\,Eur.
    779 
    780 \textbf{Future extensions:} The known duty cycle of 10\%
    781 ($\sim$1000\,h/year) for a Cherenkov telescope operated at La Palma
    782 limits the time-coverage of the observations. Therefore we propose a
    783 worldwide network of ($<$10) small scale Cherenkov telescopes to be
    784 build in the future allowing 24\,h monitoring of the bright AGNs. Such a
    785 system is so far completely unique in this energy range. In a first
    786 stage of the project mounts of other former HEGRA telescopes could be
    787 used operated at locations in Croatia, the United States and Mexico.
    788 For an increased sensitivity and improved energy threshold the use of a
    789 low-cost mount build by the company MERO for solar power generation is
    790 proposed. The mount is based on the experiences with the MAGIC
    791 telescope, also builds by MERO, and has a diameter in the order of
    792 eight meters. Including support (concrete foundation, railways, etc)
    793 the costs are below 100.000\,Eur.
    794 \textbf{The intended future use of a camera built of G-APDs will by their
    795 highly improved QE (50\% instead of 20\%) increase the sensitivity by a factor
    796 of $\sim$2 and additionally lower the threshold by an equal amount.\\
    797 MAGIC PMTs?}
    798 
    799 \begin{figure}[ht]
     799mirror by using a hexagonal layout instead of a round one. A further
     800increase of the mirror area would require a reconstruction of parts of
     801the mount and will therefore be considered only in a later phase of the
     802experiment.
     803
     804If the current development of the plastic mirrors cannot be finished in
     805time, a re-machining of the old glass mirrors (8.5\,m$^2$) is possible
     806with high purity aluminum and quartz coating.
     807
     808In both cases the mirrors can be coated with the same high reflectivity
     809aluminized Mylar mirror-foil, and a dialectical layer of SiO2 as for
     810the Winston Cones. By this, a gain in reflectivity of $\sim10\%$ is
     811achieved, see plot \citep{Fraunhofer}.
     812
     813\begin{figure}[thb]
    800814\centering{
    801 \includegraphics[width=12cm]{cam271.eps}
    802 \caption{Schematic picture of the 313 pixel camera for DWARF with a field of view of 5$^\circ$.}
    803 \label{camDWARF}
     815\includegraphics[width=0.32\textwidth]{cherenkov.eps}
     816\includegraphics[width=0.32\textwidth]{reflectivity.eps}
     817\includegraphics[width=0.32\textwidth]{qe.eps}
     818\caption{xxx yyy zzz }
     819\label{reflectivity}
    804820}
    805821\end{figure}
    806822
    807 \begin{figure}[ht]
    808 \centering{
    809 \includegraphics[height=0.4\textheight]{cam313.eps}
    810 \caption{Schematic picture of the 271 pixel CT-3 camera with a field of view of 4.6$^\circ$.}
    811 \label{camCT3}
    812 }
    813 \end{figure}
    814 
    815 \begin{figure}[ht]
    816 \centering{
    817 \includegraphics[height=0.4\textheight]{cam313.eps}
    818 \caption{Picture of the HEGRA CT-3 taken at a time when it was still in operation.}
    819 \label{CT3}
    820 }
    821 \end{figure}
    822 
    823 \begin{figure}[ht]
    824 \centering{
    825 \includegraphics[height=0.4\textheight]{cam313.eps}
    826 \caption{Photo montage of DWARF as it will look alike after the mirror replacement.}
    827 \label{DWARF}
    828 }
    829 \end{figure}
    830 
    831 \clearpage
    832 \newpage
    833 \paragraph{3.3 ???? Untersuchungen}~\\
    834 n/a
    835 
    836 \paragraph{3.4 ???? Untersuchungen}~\\
    837 n/a
    838 
    839 \paragraph{3.5 ???? Untersuchungen}~\\
    840 n/a
    841 
    842 \newpage
    843 
    844 
    845 \section[4]{Beantragte Mittel/Funds requested}
    846 
    847 We request funding for a total of three years.
    848 
    849 \subsection[4.1]{Personalbedarf/Required staff}
    850 %Wir beantragen die F"orderung von je einem Postdoc und Doktoranden in
    851 %W"urzburg und Dortmund.
    852 We request funding for two postdocs (BATIIa, 3y) and two Ph.D. students
    853 (BATIIa/2, 3y), one in Dortmund and one in W"urzburg each.
    854 
    855 (im Antrag ist der qualifizierte Einsatz der studentischen Hilfskraefte
    856 darzulegen, KEINE Betr"age angeben!)
    857 
    858 (Bezahlung ab wann?, Kurzer Abriss der Aufgaben, ggf. Namen)
    859 
    860 \anmerk{2 Institute x 3 Jahre x (1
    861 PD = 60.000 + 1 PhD = 30.000) = 2 x 250.000 = 500.000}
    862 
    863 %Von den Mitarbeitern sollen folgende Aufgaben erf"ullt werden:
    864 The staff members shall fulfill the following tasks:
    865 
    866 \begin{itemize}
    867 
    868 \item Postdoc W"urzburg
    869 
    870 \item Doktorand W"urzbug
    871 
    872 \item Postdoc Dortmund
    873 
    874 \item Doktorand Dortmund
    875 
    876 \end{itemize}
    877 
    878 %Geeignete und ggf. interessierte Kandidaten f"ur Postdocstellen sind...
    879 Suitable candidates interested in these positions are Dr. xxx, Dr. yyy,
    880 Dipl.-Phys. zzz and Dipl.-Phys. www.
    881 
    882 \subsection[4.2]{Wissenschaftliche Ger"ate/Scientific equipment}
    883 
    884 {\em
    885 \begin{itemize}
    886 \item Alle Ger"ate "uber 10kEur, so spezifizieren, dass nach Bewilligung von der DFG beschafft werden k"onnen
    887 \item Alle Ger"ate unter 10kEur, "Ubersicht mit Modellen, Begr"undung der Notwendigkeit
    888 \end{itemize}
    889 }
    890 
    891 
    892 {\bf Camera} (self-made)\dotfill 204.000,00\,Eur\\[1ex]
    893    313\,pixels \'a\\
     823
     824Both solutions would require the same expenses.
     825
     826To keep track of the alignment, reflectivity and optical quality of the
     827individual mirrors and the point-spread function of the total mirror
     828during long-term observations, the application of an automatic mirror
     829adjustment system, as developed by ETH Z"urich and successfully
     830operated on the MAGIC telescope, is intended. <grey>The system
     831will be provided by ETH Z"urich.</grey>
     832
     833{\bf For a diameter mirror of less than 2.4\,m, the delay between an
     834parabolic (isochronus) and a spherical mirror shape at the edge is well
     835below 1ns (see figure). Thus for a sampling rate of 1.2\,GHz parabolic
     836individual mirrors are not needed. Due to their small size the
     837individual mirrors can have a spherical shape.}
     838%}\\[2ex]
     839\end{quote}\vspace{3ex}
     840
     841{\bf Calibration System}\dotfill 6.650\,\euro+IPR?\\[-3ex]
     842\begin{quote}
     843Components\\
    894844   \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
    895    Photomultiplier Tube EMI 4051\hfill 350,00\,Eur\\
    896    High voltage support and control (EMI)\hfill 250,00\,Eur\\
    897    Preamplifier\hfill 50,00\,Eur\\
     845   Absolute light calibration\hfill 2.000,00\,\euro\\
     846   Individual pixel rate control\hfill ???,00\,\euro\\
     847   Weather station\hfill 500,00\,\euro\\
     848   GPS clock\hfill 1.500,00\,\euro\\
     849   CCD cameras with readout\hfill 2.650,00\,\euro\\
    898850   \end{minipage}\\[-0.5ex]
    899 \parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{The chosen PMT is the
    900 successor of the PMT type formerly used in  the HEGRA cameras. It has
    901 an 25\% enhances quantum efficiency and will be delivered with the HV
    902 support and control, including the control electronics such as the high
    903 voltage power supply.}\\[2ex]
    904 
    905 {\bf Data acquisition}(self-made)\dotfill 77.000\,Eur\\[1ex]
    906    313\,pixels \'a\\
     851%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
     852For the absolute light calibration (gain-calibration) of the PMs a
     853calibration box as successfully used in the MAGIC telescope will be
     854produced.
     855
     856To ensure a homogeneous acceptance over the whole camera essential for
     857wobble-mode observations the trigger rate of the individual pixels have
     858to be measured. Therefore the slow control system will be equipped with
     859a feedback on the individual pixel rate.
     860
     861To correct for axis misalignments and possible deformations of the
     862structure (e.g. bending of camera holding masts), a pointing correction
     863algorithm as used in the MAGIC tracking system will be applied. It is
     864calibrated by measurements of the reflection of bright guide stars on
     865the camera surface and ensures a pointing accuracy well below the pixel
     866diameter. Therefore a high sensitive low-cost video camera, as already
     867in operation for MAGIC\ I and~II, ({\bf 300\,\euro\ camera, 600\,\euro\
     868optics, 300\,\euro\ housing, 250\,\euro\ Frame grabber}) will be
     869installed.
     870
     871A second identical CCD camera for online monitoring (starguider) will
     872be bought.
     873
     874A GPS clock is necessary for an accurate tracking. The weather station
     875helps judging the data quality.
     876%}\\[2ex]
     877\end{quote}\vspace{3ex}
     878
     879
     880{\bf Computing}\dotfill 12.000,00\,\euro\\[-3ex]
     881\begin{quote}
    907882   \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
    908    Readout/channel\hfill 145,00\,Eur\\
    909    Trigger/channel\hfill 100,00\,Eur\\
     883   On-site\hfill 12.000\,\euro\\
     884   Three PCs\hfill 8.000\,\euro\\
     885   SATA RAID 3TB\hfill 4.000\,\euro\\
    910886   \end{minipage}\\[-0.5ex]
    911 \parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{Wie schreiben wir das auf?
    912 Wenn ich es richtig verstehe k"onnen wir nicht schreiben wir w"urden
    913 f"ur Riccardo die Elektronik bezahlen, denn sagt die DFG das m"u"ste
    914 Riccardo selber beantragen. Es ist ja nicht  ausgeschlossen, da"s er es
    915 tut.}\\[2ex]
    916 
    917 {\bf Calibration System}\dotfill 9.000\,Eur\\[1ex]
     887%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
     888For on-site computing three standard PCs are needed ($\sim$8.000\,\euro).
     889This includes readout and storage, preprocessing and telescope control.
     890For safety reasons, a firewall is mandatory. For local cache-storage
     891and backup, two RAID\,5 SATA disk arrays with one Terabyte capacity
     892each will fulfill the requirement ($\sim$4.000\,\euro). The data will be
     893transmitted as soon as possible after data taking via Internet to the
     894W"urzburg Datacenter. Enough storage capacity and computing power
     895is available there and already reserved for this purpose.
     896
     897Monte Carlo production and storage will take place at University
     898Dortmund.%}\\[2ex]
     899\end{quote}\vspace{3ex}
     900
     901{\bf Mount and Drive}\dotfill 17.500,00\,\euro\\[-3ex]
     902\begin{quote}
     903%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
     904The present mount is used. Only a smaller investment for safety,
     905corrosion protection, cable ducts, etc. is needed (7.500\,\euro).
     906
     907For movement, motors, shaft encoders and control electronics in the
     908order of 10.000\,\euro\ have to be bought. The costs have been estimated
     909with the experience from building the MAGIC drive systems. The DWARF
     910drive system should allow for relatively fast repositioning for three
     911reasons: 1)~Fast movement might be mandatory for future ToO
     912observations. 2)~Wobble-mode observations will be done changing the
     913wobble-position continuously (each 20\,min) for symmetry reasons. 3)~To
     914ensure good time coverage of more than one source visible at the same
     915time, the observed source will be changed in constant time intervals
     916($\sim$20\,min).
     917
     918Therefore three 150\,Watt servo motors are intended to be bought. A
     919micro-controller based motion control unit (Siemens SPS L\,20) similar to
     920the one of the current MAGIC\ II drive system will be used. For
     921communication with the readout-system, a standard ethernet connection
     922based on the TCP/IP- and UDP-protocol will be setup.
     923%}\\[2ex]
     924\end{quote}\vspace{3ex}
     925
     926{\bf Security}\dotfill 4.000,00\,\euro\\[-3ex]
     927\begin{quote}
    918928   \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
    919    Absolute light calibration\hfill 2.000\,Eur\\
    920    Individual pixel rate control\hfill ?.???\,Eur\\
    921    Weather station\hfill 500\,Eur\\
    922    GPS clock\hfill 1.500\,Eur\\
    923    CCD camera with readout\hfill 5.000\,Eur\\
     929   UPS\hfill 2.000,00\,\euro\\
     930   Security fence\hfill 2.000,00\,\euro\\
    924931   \end{minipage}\\[-0.5ex]
    925 \parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{The GPs clock is necessary
    926 for an accurate tracking. The light calibration box (was ist das?) will
    927 be baught from the institute which produced the MAGIC calibration box.
    928 The weather station helps judging the data  quality and the CCD cameras
    929 are necessary for calibration of the tracking system (misalignment of
    930 the telescope) and mispointing correction, e.g. due to wind gusts.}\\[2ex]
    931 
    932 {\bf Mirrors} (total expense)\dotfill 15.000\,Eur\\
    933 
    934 {\bf On-site computing}\dotfill 12.000\,Eur\\
     932%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
     933An uninterruptable power-supply unit (UPS) with 5\,kW-10\,kW will be
     934installed to protect the equipment against power cuts and ensure a safe
     935telescope position at the time of sunrise. ($<$2.000\,Eur)
     936
     937A fence for protection in case of robotic movement will be
     938installed.%}\\[2ex]
     939\end{quote}\vspace{3ex}
     940
     941{\bf Other expenses}\dotfill 7.500,00\,\euro\\[-3ex]
     942\begin{quote}
     943\parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
     944   Robotics\hfill 7.500,00\,\euro\\
     945   \end{minipage}\\[-0.5ex]
     946%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
     947For remote operation a variety of remote controllable electronic
     948components such as ethernet controlled sockets and switches will be
     949bought. Monitoring equipment, for example different kind of sensors, is
     950also mandatory.%}\\[2ex]
     951\end{quote}\vspace{3ex}
     952
     953{\bf 4.2 Consumables (Verbrauchsmaterial)}\dotfill 10.750,00\,\euro\\[-3ex]
     954\begin{quote}
    935955   \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
    936    Three PCs\hfill 8.000\,Eur\\
    937    SATA RAID 3\,TB\hfill 4.000\,Eur\\
     956   10 LTO\,4 tapes (8\,TB)\hfill 750,00\,\euro\\
     957   Consumables (overalls) tools and materials\hfill 10.000,00\,\euro\\
    938958   \end{minipage}\\[-0.5ex]
    939 
    940 {\bf Computing}\dotfill 4.000\,Eur\\
    941    \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth}
    942    3\,TB disk extension\hfill 4.000\,Eur\\
    943    \end{minipage}\\[-0.5ex]
     959%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
     960%For remote operation a variety of remote controllable electronic
     961%components such as ethernet controlled sockets and switches will be
     962%bought. Monitoring equipment, for example different kind of sensors, is
     963%also mandatory.%}\\[2ex]
     964\end{quote}\vspace{1ex}
    944965
    945966\hspace*{0.66\textwidth}\hrulefill\\[0.5ex]
    946 \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Summe 4.1:\hfill{\bf 500.000\,Eur}\hfill\hspace*{0pt}\\[-1ex]
     967\hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.1+4.2:\hfill{\bf
     968352.985,00\,\euro}\hfill\hspace*{0pt}\\[-1ex]
    947969\hspace*{0.66\textwidth}\hrulefill\\[-1.9ex]
    948970\hspace*{0.66\textwidth}\hrulefill\\
    949971
    950972
    951 %@{\extracolsep{1em} \vfill
    952 %\begin{tabular*}{\textwidth}{@{}l@{\extracolsep\fill}r@{}}
    953 %\begin{tabular*}{\textwidth}{l@{\extracolsep\fill}|r|r}
    954 %{\bf Ger"at A} (Typ)&& 1.000,75\,Eur\\
    955 %Angebor der Firma xyz vom&&\\[1ex]
    956 %{\bf Ger"at B} (Typ)&& 1.000,75\,Eur\\
    957 %Angebot der Firma... vom&&\\[1ex]
    958 
    959 %{\bf Camera} (Eigenbau)&& 204.000\,Eur\\[0.1ex]
    960 %313\,Pixel*650\,Euro/Pixel&&\\
    961 
    962 %\multicolumn{2}{p{0.5\textwidth}}
    963 %{
    964 %  \begin{tabular}{@{\hspace{1.5em}}l@{\extracolsep\fill}r}
    965 %  313 Pixel a 650,00\,Eur&xxx,yy Eur\\
    966 %  \multicolumn{2}{p{1.0\textwidth}}
    967 %  {
    968 %      \end{tabular}
    969 %  }\\[0.1ex]
    970 %  Winston Cones&3.000,00\,Eur\\
    971 %  Holding and chassis&3.000,00\,Eur\\
    972 %  \end{tabular}
    973  
    974   %begin{list}{-}{\topsep 0pt\parskip 0pt }
    975   %\begin{itemize}
    976   %\item Pixel: 650EURO/Pixel
    977   %   \begin{itemize}
    978   %   %\begin{itemize}
    979   %   \item 300-350Euro Photomultiplier (EMI 4051)
    980   %   \item 50EURO Preamplifier
    981   %   \item 200-250EURO HV control and support (EMI)
    982   %   \end{itemize}
    983   %\item Winston Cones: 3000Eur (?)
    984   %\item Camera holding and chassis: 3000EURO(?)
    985   %\end{itemize}
    986 %}\\
    987 
    988 %Linie nur rechts&&\\ \cline{3-3}\\[-1.5ex]
    989 %&Summe 4.2&{\bf 250.000 Eur}\\ \cline{3-3}\\[-1.9ex]\cline{3-3}
    990 %\end{tabular*}
    991 
    992 
     973\subsection[4.3]{Reisen/Travel expenses}
     974
     975In total, we apply for an amount of 72.200\,\euro\ for travelling. This
     976large amount of travel funding is required due to the very close
     977cooperation between Dortmund and W"urzburg and the work demands on the
     978construction site.\\[-2ex]
     979
     980\begin{quote}
     981%\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{
     982Per year one senior group member from Dortmund and W"urzburg should
     983present the status of the work in progress on an international workshop
     984or conference:
     985
     9862 x 3 years x 1500\,\euro\dotfill 9000,00\,\euro\\
     987
     988One participation on the biannual MAGIC collaboration meeting:
     989
     9902 x 3 years x 1000\,\euro\dotfill 6000,00\,\euro\\
     991
     992PhD student exchange between W"urzburg and Dortmund
     993
     9941 student x 1 week x 24 (every six weeks) x 800\,\euro\dotfill
     99519.200,00\,\euro\\
     996
     997For setup of the telescope at La Palme the following travel expenses
     998are necessary:
     999
     10004 x 2 weeks at La Palma x 2 persons x 1800\,\euro\dotfill
     100128.800,00\,\euro\\
     1002%}
     1003\end{quote}
     1004
     1005\subsection[4.5]{Publikationskosten/Publication costs}
     1006Will be covered by the proposing institutes.
     1007
     1008\subsection[4.6]{Other costs (Sonstige Kosten)}
     1009
     1010Storage container\dotfill 5.000,00\,\euro\\
     1011dismantling (will be covered by proposing institutes)\dotfill n/a\\
     1012Transport\dotfill 15.000,00\,\euro\\
     1013
     1014\section[5]{Voraussetzungen f"ur die Durchf"uhrung des Vorhabens\\Preconditions for carrying out the project}
     1015none
     1016
     1017\subsection[5.1]{The research team (Zusammensetzung der Arbeitsgruppe)}
     1018
     1019\paragraph{Dortmund}
    9931020\begin{itemize}
    994 
    995 %\item Data acquisition: 313channel*245EURO/channel ~ 77.000EURO
    996 %  \begin{itemize}
    997 %  \item 145 (95) EURO/channel Readout
    998 %  \item 100EURO/channel Trigger
    999 %  \end{itemize}
    1000 
    1001 %\item Calibration System: 9.000EURO
    1002 %  \begin{itemize}
    1003 %  \item 2000EURO Absolute light calibration?
    1004 %  \item IPR control?
    1005 %  \item Weather station 500EURO
    1006 %  \item 1500EURO GPS clock
    1007 %  \item 5.000EURO CD Cameras + readout
    1008 %  \end{itemize}
    1009 
    1010 
    1011 %\item On-site computing: 12.000EURO
    1012 %  \begin{itemize}
    1013 %  \item 3xPC: 8000EURO
    1014 %  \item SATA RAID 3TB: 4000EURO
    1015 %  \end{itemize}       
    1016 %
    1017 %\item Computing: 4.000EURO
    1018 %  \begin{itemize}
    1019 %  \item 3TB SATA Disk space: 4000EURO(?)
    1020 %  \end{itemize}
    1021 
    1022 \item AMC: 1000EURO/pannel
    1023 \item UPS: 2000EURO
    1024 \item 7.500EURO Robotics
    1025 
     1021\setlength{\itemsep}{0pt}
     1022\setlength{\parsep}{0pt}
     1023\item Prof.\ Dr.\ Dr.\ Wolfgang Rhode (Grundausttattung)
     1024\item Dr.\ Tanja Kneiske (Postdoc (Ph"anomenologie), DFG-Forschungsstipendium)
     1025\item Dr.\ Julia Becker (Postdoc (Ph"anomenologie), Drittmittel)
     1026\item Dipl.-Phys.\ Kirsten M"unich (Doktorand (IceCube), Drittmittel)
     1027\item Dipl.-Phys.\ Jens Dreyer (Doktorand (IceCube), Grundausttattung)
     1028\item M.Sc.\ Valentin Curtef (Doktorand (MAGIC), Grundausstattung)
     1029\item cand.\ phys.\ Michael Backes (Diplomand (MAGIC), zum F\"orderbeginn diplomiert)
     1030\item cand.\ phys.\ Daniela Hadasch (Diplomand (MAGIC))
     1031\item cand.\ phys.\ Anne Wiedemann (Diplomand (IceCube))
     1032\item cand.\ phys.\ Dominik Neise (Diplomand (MAGIC))
     1033\item Dipl.-Ing.\ Kai Warda (Elektronik)
     1034\item PTA Matthias Domke (Systemadministration)
    10261035\end{itemize}
    10271036
    1028 \subsection{Verbrauchsmaterial/Consumables}
    1029 {\em
     1037\paragraph{W"urzburg}
    10301038\begin{itemize}
    1031 \item Chemikalien, Glaswaren, etc. (Werkzeug?)
    1032 \item Stromrechnung La Palma (IAC Beitrag?), wie hoch pro Jahr?
     1039\setlength{\itemsep}{0pt}
     1040\setlength{\parsep}{0pt}
     1041\item Prof.\ Dr.\ Karl Mannheim (Landesmittel)
     1042\item Prof.\ Dr.\ Thomas Trefzger (Landesmittel)
     1043\item Prof.\ Dr.\ Wolfgang Dr"oge (Landesmittel)
     1044\item Dr.\ Thomas Bretz (Postdoc (MAGIC), BMBF)
     1045\item Dr.\ Felix Spanier (Postdoc, Landesmittel)
     1046\item Dipl.-Phys.\ Jordi Albert (Doktorand, DFG-GRK1147)
     1047\item Dipl.-Phys.\ Karsten Berger (Doktorand (MAGIC), Landesmittel)
     1048\item Dipl.-Phys.\ Thomas Burkart (Doktorand (LISA), DLR)
     1049\item Dipl.-Phys.\ Oliver Elbracht (Doktorand, Elitenetzwerk Bayern)
     1050\item Dipl.-Phys.\ Dominik Els"asser (Doktorand, Elitenetzwerk Bayern)
     1051\item Dipl.-Phys.\ Daniela Dorner (Doktorand (MAGIC), BMBF)
     1052\item Dipl.-Phys.\ Daniel H"ohne (Doktorand (MAGIC), Landesmittel)
     1053\item Dipl.-Phys.\ Markus Meyer (Doktorand, DFG-GRK1147)
     1054\item M.Sc.\ Surajit Paul (Doktorand, DFG-GRK1147)
     1055\item Dipl.-Phys.\ Stefan R"ugamer (Doktorand (MAGIC), Landesmittel)
     1056\item Dipl.-Phys.\ Michael R"uger (Doktorand, Elitenetzwerk Bayern)
     1057\item Dipl.-Phys.\ Martina Wei"s (Doktorand, Elitenetzwerk Bayern)
     1058\item cand.\ phys.\ Sebastian Huber
     1059\item cand.\ phys.\ Tobias Hein
     1060\item cand.\ phys.\ Tobias Viering
    10331061\end{itemize}
    1034 }
    1035 
    1036 \begin{itemize}
    1037   \item operation costs: 5000EURO/3years
    1038   \item 25 LTO3 Tapes: 1000EURO
    1039   \item 10.000EURO Consumables
    1040 \end{itemize}
    1041 
    1042 \subsection{Reisen/Travel expenses}
    1043 
    1044 {\em
    1045 \begin{itemize}
    1046 \item Alle Reisen begr"unden
    1047 \item Zusammenarbeit mit anderen Wissenschaftlern
    1048 \item Einladung von G"asten (Zahl und Dauer)
    1049 \item Workshops
    1050 \item Kongressreisen (KEIN weiterer Antrag bei der DFG m"oglich)
    1051 \item Telskop Aufbau
    1052 \end{itemize}
    1053 }
    1054 
    1055 \begin{itemize}
    1056   \item 35.000EURO Travel and construction
    1057 \end{itemize}
    1058 
    1059 \subsection{Publikationskosten/Publication costs}
    1060 %keine
    1061 none
    1062 
    1063 \subsection {Sonstige Kosten}
    1064 %keine\\
    1065 \begin{itemize}
    1066    \item 5.000EURO transport and storage container
    1067    \item Dismantling (0, will be covered by proposing institutes)
    1068    \item 15.000EURO Transport
    1069    \item \textbf{2.000EURO security fence}
    1070          \item \textbf{150.000EURO Kick-off Meeting Lapland}
    1071 \end{itemize}
    1072 
    1073 \section[5]{Voraussetzungen f"ur die Durchf"uhrung des Vorhabens\\Preconditions for carrying out the project}
    1074 %Vor Durchf"uhrung ist die Zustimmung der Magic-Kollaboration und des
    1075 %IAC einzuholen. Nach Vorgespr"achen ist von der Erteilung dieser
    1076 %Zustimmung auszugehen.
    1077 
    1078 Before realization the consent of the Magic collaboration and the IAC
    1079 is required. According to preliminary talks this consent is expected to
    1080 be given.
    1081 
    1082 \subsection{Zusammensetzung der Arbeitsgruppe/The research team}
    1083 
    1084 {\em
    1085 \begin{itemize}
    1086 \item Name, akademischer Grad, Dienststellung aller die am geplanten Vorhaben mitarbeiten sollen
    1087 \item technisches Personal, Hilfskr"afte: Anzahl reicht
    1088 \item Trenning nach Drittmitteln (Stipendien) und Istitutsmitteln
    1089 \end {itemize}
    1090 }
    1091 
    1092 
    1093 
    1094 
    1095 \noindent {\bf Dortmund}:
    1096 
    1097 \begin{itemize}
    1098 \item Prof. Dr. Dr. Wolfgang Rhode (Grundausttattung)
    1099 \item Dr. Tanja Kneiske (Postdoc (Ph"anomenologie), Forschungsstipendium)
    1100 \item Dr. Julia Becker (Postdoc (Ph"anomenologie), Grundausttattung)
    1101 \item Dipl.-Phys. Jens Dreyer (Doktorand (IceCube), Grundausttattung)
    1102 \item Dipl.-Phys Kirsten M"unich (Doktorandin (IceCube), Projekt-finanziert)
    1103 \item M.Sc. Valentin Curtef (Doktorand (MAGIC), Projekt-finanziert)
    1104 \item cand. phys. Jan L"unemann (Diplomand (IceCube), zum F\"orderbeginn diplomiert)
    1105 \item cand. phys. Dominik Leier (Diplomand (Ph"anomenologie), zum F\"orderbeginn diplomiert)
    1106 \item cand. phys. Michael Backes (Diplomand (MAGIC), zum F\"orderbeginn diplomiert)
    1107 \item cand. phys. Daniela Hadasch (Diplomandin (MAGIC))
    1108 \item Dipl.-Ing. Kai Warda (Elektronik)
    1109 \item PTA Matthias Domke (Systemadministration)
    1110 \end{itemize}
    1111 
    1112 \noindent{\bf W"urzburg}:
    1113 
    1114 \begin{itemize}
    1115 \item Prof. Dr. Karl Mannheim (Grundausttattung)
    1116 \item Prof. Dr. Wolfgang Dr"oge (Grundausttattung???)
    1117 \item Dipl.-Phys. nn (Grundausstattung)
    1118 \item Dipl.-Phys. nn (Fremdfinanziert)
    1119 \end{itemize}
    1120 
    1121 \subsection{Zusammenarbeit mit anderen Wissenschaftlern\\Co-operation with other scientists}
    1122 
    1123 {\em Nennung der Wissenschaftler mit denen eine konkrete(!) Zusammenarbeit oder Abstimmung besteht}
    1124 
    1125 Both applying groups co-operate with the international MAGIC-Collaboration
    1126 and the institutes represented therein. (W"urzburg funded by the BMBF, Dortmund
    1127 by means of appointment for the moment.)\\
    1128 {\bf Dr.~Adrian Biland, Prof.~Dr.~Eckart Lorenz (both ETH Z"urich)}\\
    1129 {\bf Prof.~Riccardo Paoletti (Università di Siena and INFN sez. di Pisa, Italy)}\\
    1130 
    1131 \noindent The group in Dortmund is involved in the IceCube experiment
    1132 (BMBF funding) and maintains close contacts to the collaboration
    1133 partners. Moreover on the field  of phenomenology there do exist good
    1134 working contacts to the groups of  Prof.~Dr.~Reinhard~Schlickeiser,
    1135 Ruhr-Universit"at Bochum and Prof.~Dr.~Peter~Biermann,  MPIfR Bonn.
    1136 There are furthermore contacts to Dr.~Anita Reimer, Stanford (USA) and
    1137 Prof.~Dr.~Ray~Protheroe, Adelaide (Australien).\\ {\bf Francis Halzen,
    1138 evtl. John Quenby}\\
    1139 
    1140 \noindent W"urzburg is involved in ... maintains contacts to ...\\
    1141 Prof.~Dr.~Wolfgang Dr\"oge\\
    1142 
    1143 \subsection{Arbeiten im Ausland, Kooperation mit Partnern im Ausland\\Work outside Germany, Cooperation with foreign partners}
    1144 
    1145 {\em
    1146 \begin{itemize}
    1147 \item Wird das Vorhaben ganz oder teilw. im Ausland durchgef"uhrt
    1148 \item Findet konkrete Kooperation (Kolaboration!) statt (welche L"ander)
    1149 \item Art und Umfang der Zusammenhang darlegen (Name, Adresse, Stellung)
    1150 \end{itemize}
    1151 }
     1062
     1063\subsection[5.2]{Co-operation with other scientists (Zusammenarbeit mit
     1064anderen Wissenschaftlern)}
     1065
     1066Both applying groups co-operate with the international
     1067MAGIC-Collaboration and the institutes represented therein. (W"urzburg
     1068funded by the BMBF, Dortmund by means of appointment for the moment).
     1069
     1070W"urzburg is also in close scientific exchange with the group of
     1071Prof.~Dr.~Victoria Fonseca, UCM Madrid and the University of Turku
     1072(Finland) operating the KVA optical telescope at La Palma. Other
     1073cooperations refer to the projects JEM-EUSO (science case), GRIPS
     1074(simulation), LISA (astrophysical input for templates), STEREO (data
     1075analysis), and SOLAR ORBITER (electron-proton telescope). A cooperation
     1076with GLAST science team members (Dr.~Anita and Dr.~Olaf Reimer,
     1077Stanford) is also relevant for the proposed project.
     1078
     1079The group in Dortmund is involved in the IceCube experiment (BMBF
     1080funding) and maintains close contacts to the collaboration partners.
     1081Moreover on the field of phenomenology there do exist good working
     1082contacts to the groups of Prof.~Dr.~Reinhard Schlickeiser,
     1083Ruhr-Universit"at Bochum and Prof.~Dr.~Peter Biermann, MPIfR Bonn.
     1084There are furthermore intense contacts to Prof.~Dr.~Francis Halzen,
     1085Madison, Wisconsin.
     1086
     1087The telescope design will be worked out in close cooperation with the
     1088group of Prof.~Dr.~Felicitas Pauss, Dr.~Adrian Biland and
     1089Prof.~Dr.~Eckart Lorenz (ETH Z"urich). They will provide help in design
     1090studies, construction and software development. The DAQ design will be
     1091contributed by the group of Prof.~Dr.~Riccardo Paoletti (Università di
     1092Siena and INFN sez.\ di Pisa, Italy).
     1093
     1094The group of the newly appointed {\em Lehrstuhl f"ur Physik und Ihre
     1095Didaktik} (Prof.~Dr.~Thomas Trefzger} has expressed their interest to
     1096join the project. They bring in a laboratory for photo-sensor testing,
     1097know-how from former contributions to ATLAS and a joint interest in
     1098operating a data pipeline using GRID technologies.
     1099
     1100\subsection[5.3]{Work outside Germany, Cooperation with foreign
     1101partners (Arbeiten im Ausland, Kooperation mit Partnern im Ausland)}
    11521102
    11531103The work on DWARF will take place at the ORM on the Spanish island La
    11541104Palma. It will be performed in close collaboration with the
    1155 MAGIC-collaboration.
    1156 
    1157 \subsection{Apparative Ausstattung/Scientific equipment available}
    1158 
    1159 {\em
    1160 \begin{itemize}
    1161 \item Am Ort vorhandene gr"o"sere Ger"ate
    1162 \end{itemize}
    1163 }
    1164 
    1165 
    1166 Both in Dortmund and in W"urzburg there are extensive computer
    1167 capacities available for data storing as well as for data analysis.
    1168 
    1169 %Dortmund: Der Fachbereich Physik der Universit"at Dortmund verf"ugt "uber
    1170 %modern ausgestattete mechanische und elektronische Werkst"atten
    1171 %einschlie"slich einer Elektronik-Entwicklung. Der Lehrstuhlbereich
    1172 %Astroteilchenphysik verf"ugt "uber g"angige zur Erstellung moderner
    1173 %DAQ erforderliche apparative Ausstattung.\\
    1174 Dortmund: The Fachbereich Physik at the Universit"at Dortmund has
    1175 modern equipped mechanical and electrical workshops including a
    1176 department for development of electronics at its command. The
    1177 Lehrstuhlbereich Astroteilchenphysik possesses common technical
    1178 equipment required for constructing modern DAQ.
    1179 
    1180 W"urzburg:...
    1181 
    1182 \subsection{Laufende Mittel f"ur Sachausgaben\\The institution's general contribution}
    1183 
    1184 {\em
    1185 \begin{itemize}
    1186 \item Angaben "uber Instituts-/Drittmittel (trennen) die f"ur das Projekt(!) j"arhrlich zur Verf"ugung stehen
    1187 \end{itemize}
    1188 }
    1189 
    1190 %Das gegenw"artige Budget des Lehrstuhls f"ur Astronomie der Universit"at
    1191 %W"urzburg betr"agt $\approx $ 12345 EURO pro Jahr.\\
    1192 %Das gegenw"artige Budget des Lehrstuhlbereiches Astroteilchnphysik der
    1193 %Universit"at Dortmund betr"agt $\approx $ 20000 EURO pro Jahr.
    1194 Current total institute budget from the Universit"at Dortmund $\approx$
    1195 20000 EURO per year.\\
    1196 
    1197 Current total institute budget from the Universit"at W"urzburg
    1198 $\approx$ xxxxx EURO per year.\\
     1105MAGIC-Collaboration.
     1106
     1107\subsection[5.4]{Scientific equipment available (Apparative
     1108Ausstattung)}
     1109In Dortmund and W"urzburg extensive computer capacities for data
     1110storage as well as for data analysis are available.
     1111
     1112The faculty of physics at the University of Dortmund has modern
     1113equipped mechanical and electrical workshops including a department for
     1114development of electronics at its command. The chair of astroparticle
     1115physics possesses common technical equipment required for constructing
     1116modern DAQ.
     1117
     1118The faculty of physics at the University of W"urzburg comes with a
     1119mechanical and an electronic workshop, as well as a special laboratory
     1120of the chair for astronomy suitable for photosensor testing.
     1121
     1122\subsection[5.5]{The institution's general contribution (Laufende
     1123Mittel f"ur Sachausgaben)}
     1124Current total institute budget from the University Dortmund $\approx$
     112520.000\,\euro\ per year.\\
     1126
     1127Current total institute budget from the University W"urzburg $\approx$
     112830.000\,\euro\ per year.\\
     1129
     1130%\paragraph{5.6 Conflicts of interest in economic activities\\Interessenskonflikte bei wirtschaftlichen Aktivit"aten}~\\
     1131\subsection[5.6]{Conflicts of interest in economic activities\\Interessenskonflikte bei wirtschaftlichen Aktivit"aten}~\\
     1132none
     1133
     1134\subsection[5.7]{Other requirements (Sonstige Voraussetzungen)}~\\
     1135none
    11991136
    12001137\newpage
    1201 \paragraph{5.6 Conflicts of interest in economic activities\\Interessenskonflikte bei wirtschaftlichen Aktivit"aten}~\\
    1202 none
    1203 
    1204 \paragraph{5.7 Other requirements (Sonstige Voraussetzungen)}~\\
    1205 none
     1138\thispagestyle{empty}
    12061139
    12071140\paragraph{6 Declarations (Erkl"arungen)}
     
    12121145
    12131146The corresponding persons (Vertrauensdozenten) at the
    1214 Universit"at Dortmund (Prof. Dr. Gather) and at the Universit"at
    1215 W"urzburg (Prof. XXXXX) have been informed about the submission of this
    1216 proposal.
     1147Universit"at Dortmund (Prof.\ Dr.\ Gather) and at the Universit"at
     1148W"urzburg (Prof.\ Dr.\ G.\ Bringmann) have been informed about the
     1149submission of this proposal.
    12171150
    12181151\paragraph{7 Signatures (Unterschriften)}~\\
     
    12491182%\section{References}
    12501183
    1251 \newpage
    1252 %(Referenzen aus unseren Gruppen sind mit einem Stern gekennzeichnet *)
    12531184(References of our groups are marked by an asterix *)
    12541185\bibliography{application}
Note: See TracChangeset for help on using the changeset viewer.