Changeset 8772 for trunk/Dwarf/Documents/ApplicationDFG
- Timestamp:
- 11/29/07 23:34:31 (17 years ago)
- Location:
- trunk/Dwarf/Documents/ApplicationDFG
- Files:
-
- 2 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Dwarf/Documents/ApplicationDFG/application.bib
r8771 r8772 2862 2862 } 2863 2863 2864 @ARTICLE{Rieger:2000, 2865 author = {{Rieger}, F.~M. and {Mannheim}, K.}, 2866 title = "{Implications of a possible 23 day periodicity for binary black hole models in Mkn 501}", 2867 journal = {\aap}, 2868 eprint = {arXiv:astro-ph/0005478}, 2869 year = 2000, 2870 month = jul, 2871 volume = 359, 2872 pages = {948-952}, 2873 adsurl = {http://cdsads.u-strasbg.fr/abs/2000A%26A...359..948R}, 2874 adsnote = {Provided by the Smithsonian/NASA Astrophysics Data System} 2864 @ARTICLE{Curtef:CM, 2865 author = {{Curtef}, V. and {Backes}, M. and {Hadasch}, D.}, 2866 title = "{Improvements of the energy reconstruction for the MAGIC telescope by means of analysis and Monte Carlo techniques}", 2867 journal = {Astronomische Nachrichten}, 2868 eprint = {0711.2256}, 2869 year = 2007, 2870 volume = 328, 2871 number = 7, 2875 2872 } 2876 2873 -
trunk/Dwarf/Documents/ApplicationDFG/application.tex
r8771 r8772 505 505 \includegraphics*[width=0.495\textwidth,angle=0,clip]{CT3.eps} 506 506 \includegraphics*[width=0.495\textwidth,angle=0,clip]{DWARF.eps} 507 \caption{Left: xxxxx Right: yyyy} 507 \caption{Left: The old HEGRA CT3 telescope as operated within the 508 HEGRA Sytem. Right: A photomontage how the revised CT3 telescope 509 could look like with more and hexagonal mirrors.} 508 510 \label{CT3} 509 511 \label{DWARF} … … 534 536 The scientific focus of the project will be on the long-term monitoring 535 537 of bright, nearby VHE emitting blazars. At least one of the proposed 536 targets will be visible any time of the year ( see plot). For538 targets will be visible any time of the year ({\bf see plot}). For 537 539 calibration purposes, some time will be scheduled for observations of 538 540 the Crab nebula. The blazar observations will allow … … 542 544 \item to cooperate with the Whipple monitoring telescope for an 543 545 extended time coverage. 544 \item to prompt Target ofOpportunity (ToO) observations with MAGIC in546 \item to prompt Target-of-Opportunity (ToO) observations with MAGIC in 545 547 the case of flares increasing time resolution. Corresponding 546 T arget-of-Opportunity (ToO)proposals to H.E.S.S.\ and Veritas are in548 ToO proposals to H.E.S.S.\ and Veritas are in 547 549 preparation. 548 550 \item to observe simultaneously with MAGIC which will provide an … … 582 584 The work schedule assumes that the work will begin in January 2008, 583 585 immediately after funding. Later funding would accordingly shift the 584 schedule. Each year is divided into quarters ( see figure xxx).586 schedule. Each year is divided into quarters ({\bf see figure xxx}). 585 587 586 588 \paragraph{Software} … … 611 613 612 614 We request funding for a total of three years. Summarizing, the 613 expenses for the telescope ( see section xxx) are dominated by the615 expenses for the telescope ({\bf see section xxx}) are dominated by the 614 616 camera and data acquisition. The financial volume for the complete 615 hardware inclusive transport amounts to 372.985 \,\euro.617 hardware inclusive transport amounts to 372.985,-\,\euro. 616 618 617 619 \subsection[4.1]{Required Staff (Personalbedarf)} … … 660 662 \end{figure} 661 663 662 {\bf Camera}\dotfill 207.550, 00\,\euro\\[-3ex]664 {\bf Camera}\dotfill 207.550,-\,\euro\\[-3ex] 663 665 \begin{quote} 664 666 To setup a camera with 313 pixels the following components are needed:\\ 665 667 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 666 Photomultiplier Tube EMI\,9083 KFLA-UD\hfill 220, 00\,\euro\\667 Active voltage divider ({\bf !!!!})\hfill 80, 00\,\euro\\668 High voltage support and control\hfill {\bf 300, 00}\,\euro\\669 Preamplifier\hfill 50, 00\,\euro\\670 Spare parts (overall)\hfill 3000, 00\,\euro\\668 Photomultiplier Tube EMI\,9083 KFLA-UD\hfill 220,-\,\euro\\ 669 Active voltage divider ({\bf !!!!})\hfill 80,-\,\euro\\ 670 High voltage support and control\hfill {\bf 300,-}\,\euro\\ 671 Preamplifier\hfill 50,-\,\euro\\ 672 Spare parts (overall)\hfill 3000,-\,\euro\\ 671 673 \end{minipage}\\[-0.5ex] 672 674 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ … … 709 711 round and have a diameter of $4.5^\circ-5.0^\circ$. 710 712 711 Therefor a camera with 313 Pixel camera (see figure \ref{camDWARF}) is713 Therefor a camera with 313 pixel camera (see figure \ref{camDWARF}) is 712 714 chosen. The camera will be built based on the experience with HEGRA and 713 715 MAGIC. 19\,mm diameter Photomultiplier Tubes (PM, EMI\,9083\,KFLA-UD) … … 717 719 peak energy). Each individual pixel has to be equipped with a 718 720 preamplifier, an active high-voltage supply and control. The total 719 expense for a single pixel will be in the order of 650 \,\euro.721 expense for a single pixel will be in the order of 650,-\,\euro. 720 722 721 723 All possibilities of borrowing one of the old HEGRA cameras for a 722 724 transition time have been probed and refused by the owners of the 723 725 cameras. 726 727 {\bf At ETH~Z"urich currently test measurements are ongoing to prove the 728 ability, i.e.\ stability, aging, quantum efficiency, etc., of using 729 Geiger-mode APDs (Advanced Photon Detector aka. Silicon PM) as photon 730 detector in the camera of a Cherenkov telescope. The advantages are 731 extremely high quantum efficiency (>50\%), easier gain stabilization and 732 simplified application compared to classical PMs. If these test 733 measurements are successfully finished until 8/2008 we consider to use 734 APDs in favor of classical PMs. The design of such a camera would take 735 place at University Dortmund in close collaboration with the experts 736 from ETH. Construction would also take place at the electronics 737 workshop of Dortmund.} 738 724 739 \end{quote}\vspace{3ex} 725 740 726 {\bf Camera support}\dotfill 204.000, 00\,\euro\\[-3ex]741 {\bf Camera support}\dotfill 204.000,-\,\euro\\[-3ex] 727 742 \begin{quote} 728 743 For this setup the camera holding has to be redesigned. (1500\,\euro) … … 733 748 transmission of {\bf 5\%} is expected. Each PM will be equipped with a 734 749 light-guide (Winston Cone) as developed by UC Davis and successfully in 735 operation in the MAGIC camera. (3000 \,\euro\ for all winston cones). The750 operation in the MAGIC camera. (3000,-\,\euro\ for all winston cones). The 736 751 current design will be improved by using a high reflectivity aluminized 737 752 Mylar mirror-foil, coated with a dialectical layer ($Si\,O_2$ … … 744 759 \end{quote}\vspace{3ex} 745 760 746 {\bf Data acquisition}\dotfill 61.035, 00\,\euro\\[-3ex]761 {\bf Data acquisition}\dotfill 61.035,-\,\euro\\[-3ex] 747 762 \begin{quote} 748 763 313 pixels a\\ 749 764 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 750 Readout\hfill 95, 00\,\euro\\751 Trigger\hfill 100, 00\,\euro\\765 Readout\hfill 95,-\,\euro\\ 766 Trigger\hfill 100,-\,\euro\\ 752 767 \end{minipage}\\[-0.5ex] 753 768 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ … … 775 790 As for the HEGRA telescopes a simple multiplicity trigger is sufficient, 776 791 but also a simple three-next-neighbors (closed package) could be 777 programmed. (both cases $\sim$30.000 \,Eur: $<$100\,Eur/channel).792 programmed. (both cases $\sim$30.000,-\,\euro: $<$100,-\,\euro/channel). 778 793 779 794 Additional data reduction and preprocessing in the readout hardware or … … 782 797 than 250\,GB/month or 3\,TB/year. This amount of data can easily be 783 798 stored and processed by the W"urzburg Datacenter (current online 784 capacity $>$ 35\,TB, offline capacity $>$80\,TB, $>$26\,CPUs).799 capacity $>$40\,TB, offline capacity $>$80\,TB, $>$40\,CPUs). 785 800 %}\\[2ex] 786 801 \end{quote}\vspace{3ex} 787 802 788 {\bf Mirrors}\dotfill 15.000, 00\,\euro\\[-3ex]803 {\bf Mirrors}\dotfill 15.000,-\,\euro\\[-3ex] 789 804 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 790 805 \begin{quote} … … 809 824 aluminized Mylar mirror-foil, and a dialectical layer of SiO2 as for 810 825 the Winston Cones. By this, a gain in reflectivity of $\sim10\%$ is 811 achieved, see plot\citep{Fraunhofer}.826 achieved, {\bf see plot} \citep{Fraunhofer}. 812 827 813 828 \begin{figure}[thb] … … 827 842 individual mirrors and the point-spread function of the total mirror 828 843 during long-term observations, the application of an automatic mirror 829 adjustment system, as developed by ETH Z"urich and successfully 830 operated on the MAGIC telescope, is intended. <grey>The system 831 will be provided by ETH Z"urich.</grey> 832 833 {\bf For a diameter mirror of less than 2.4\,m, the delay between an 834 parabolic (isochronus) and a spherical mirror shape at the edge is well 835 below 1ns (see figure). Thus for a sampling rate of 1.2\,GHz parabolic 836 individual mirrors are not needed. Due to their small size the 837 individual mirrors can have a spherical shape.} 844 adjustment system, as developed by ETH~Z"urich and successfully 845 operated on the MAGIC telescope, is intended. 846 %<grey>The system 847 %will be provided by ETH Z"urich.</grey> 848 849 %{\bf For a diameter mirror of less than 2.4\,m, the delay between an 850 %parabolic (isochronus) and a spherical mirror shape at the edge is well 851 %below 1ns (see figure). Thus for a sampling rate of 1.2\,GHz parabolic 852 %individual mirrors are not needed. Due to their small size the 853 %individual mirrors can have a spherical shape.} 838 854 %}\\[2ex] 839 855 \end{quote}\vspace{3ex} 840 856 841 {\bf Calibration System}\dotfill 6.650 \,\euro+IPR?\\[-3ex]857 {\bf Calibration System}\dotfill 6.650,-\,\euro+IPR?\\[-3ex] 842 858 \begin{quote} 843 859 Components\\ 844 860 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 845 Absolute light calibration\hfill 2.000, 00\,\euro\\846 Individual pixel rate control\hfill ???, 00\,\euro\\847 Weather station\hfill 500, 00\,\euro\\848 GPS clock\hfill 1.500, 00\,\euro\\849 CCD cameras with readout\hfill 2.650, 00\,\euro\\861 Absolute light calibration\hfill 2.000,-\,\euro\\ 862 Individual pixel rate control\hfill ???,-\,\euro\\ 863 Weather station\hfill 500,-\,\euro\\ 864 GPS clock\hfill 1.500,-\,\euro\\ 865 CCD cameras with readout\hfill 2.650,-\,\euro\\ 850 866 \end{minipage}\\[-0.5ex] 851 867 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ … … 865 881 the camera surface and ensures a pointing accuracy well below the pixel 866 882 diameter. Therefore a high sensitive low-cost video camera, as already 867 in operation for MAGIC\ I and~II, ({\bf 300 \,\euro\ camera, 600\,\euro\868 optics, 300 \,\euro\ housing, 250\,\euro\ Frame grabber}) will be883 in operation for MAGIC\ I and~II, ({\bf 300,-\,\euro\ camera, 600,-\,\euro\ 884 optics, 300,-\,\euro\ housing, 250,-\,\euro\ Frame grabber}) will be 869 885 installed. 870 886 … … 878 894 879 895 880 {\bf Computing}\dotfill 12.000, 00\,\euro\\[-3ex]896 {\bf Computing}\dotfill 12.000,-\,\euro\\[-3ex] 881 897 \begin{quote} 882 898 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 883 On-site\hfill 12.000 \,\euro\\884 Three PCs\hfill 8.000 \,\euro\\885 SATA RAID 3TB\hfill 4.000 \,\euro\\899 On-site\hfill 12.000,-\,\euro\\ 900 Three PCs\hfill 8.000,-\,\euro\\ 901 SATA RAID 3TB\hfill 4.000,-\,\euro\\ 886 902 \end{minipage}\\[-0.5ex] 887 903 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 888 For on-site computing three standard PCs are needed ($\sim$8.000 \,\euro).904 For on-site computing three standard PCs are needed ($\sim$8.000,-\,\euro). 889 905 This includes readout and storage, preprocessing and telescope control. 890 906 For safety reasons, a firewall is mandatory. For local cache-storage 891 907 and backup, two RAID\,5 SATA disk arrays with one Terabyte capacity 892 each will fulfill the requirement ($\sim$4.000 \,\euro). The data will be908 each will fulfill the requirement ($\sim$4.000,-\,\euro). The data will be 893 909 transmitted as soon as possible after data taking via Internet to the 894 910 W"urzburg Datacenter. Enough storage capacity and computing power … … 899 915 \end{quote}\vspace{3ex} 900 916 901 {\bf Mount and Drive}\dotfill 17.500, 00\,\euro\\[-3ex]917 {\bf Mount and Drive}\dotfill 17.500,-\,\euro\\[-3ex] 902 918 \begin{quote} 903 919 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 904 920 The present mount is used. Only a smaller investment for safety, 905 corrosion protection, cable ducts, etc. is needed (7.500 \,\euro).921 corrosion protection, cable ducts, etc. is needed (7.500,-\,\euro). 906 922 907 923 For movement, motors, shaft encoders and control electronics in the 908 order of 10.000 \,\euro\ have to be bought. The costs have been estimated924 order of 10.000,-\,\euro\ have to be bought. The costs have been estimated 909 925 with the experience from building the MAGIC drive systems. The DWARF 910 926 drive system should allow for relatively fast repositioning for three 911 reasons: 1)~Fast movement might be mandatory for future ToO912 observations. 2)~Wobble-mode observations will be done changing the913 wobble-position continuously (each 20\,min) for symmetry reasons. 3)~To927 reasons: (i)~Fast movement might be mandatory for future ToO 928 observations. (ii)~Wobble-mode observations will be done changing the 929 wobble-position continuously (each 20\,min) for symmetry reasons. (iii)~To 914 930 ensure good time coverage of more than one source visible at the same 915 931 time, the observed source will be changed in constant time intervals … … 918 934 Therefore three 150\,Watt servo motors are intended to be bought. A 919 935 micro-controller based motion control unit (Siemens SPS L\,20) similar to 920 the one of the current MAGIC \II drive system will be used. For936 the one of the current MAGIC~II drive system will be used. For 921 937 communication with the readout-system, a standard ethernet connection 922 938 based on the TCP/IP- and UDP-protocol will be setup. … … 924 940 \end{quote}\vspace{3ex} 925 941 926 {\bf Security}\dotfill 4.000, 00\,\euro\\[-3ex]942 {\bf Security}\dotfill 4.000,-\,\euro\\[-3ex] 927 943 \begin{quote} 928 944 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 929 UPS\hfill 2.000, 00\,\euro\\930 Security fence\hfill 2.000, 00\,\euro\\945 UPS\hfill 2.000,-\,\euro\\ 946 Security fence\hfill 2.000,-\,\euro\\ 931 947 \end{minipage}\\[-0.5ex] 932 948 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 933 949 An uninterruptable power-supply unit (UPS) with 5\,kW-10\,kW will be 934 950 installed to protect the equipment against power cuts and ensure a safe 935 telescope position at the time of sunrise. ($<$2.000 \,Eur)951 telescope position at the time of sunrise. ($<$2.000,-\,\euro) 936 952 937 953 A fence for protection in case of robotic movement will be … … 939 955 \end{quote}\vspace{3ex} 940 956 941 {\bf Other expenses}\dotfill 7.500, 00\,\euro\\[-3ex]957 {\bf Other expenses}\dotfill 7.500,-\,\euro\\[-3ex] 942 958 \begin{quote} 943 959 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 944 Robotics\hfill 7.500, 00\,\euro\\960 Robotics\hfill 7.500,-\,\euro\\ 945 961 \end{minipage}\\[-0.5ex] 946 962 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ … … 951 967 \end{quote}\vspace{3ex} 952 968 953 {\bf 4.2 Consumables (Verbrauchsmaterial)}\dotfill 10.750, 00\,\euro\\[-3ex]969 {\bf 4.2 Consumables (Verbrauchsmaterial)}\dotfill 10.750,-\,\euro\\[-3ex] 954 970 \begin{quote} 955 971 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 956 10 LTO\,4 tapes (8\,TB)\hfill 750, 00\,\euro\\957 Consumables (overalls) tools and materials\hfill 10.000, 00\,\euro\\972 10 LTO\,4 tapes (8\,TB)\hfill 750,-\,\euro\\ 973 Consumables (overalls) tools and materials\hfill 10.000,-\,\euro\\ 958 974 \end{minipage}\\[-0.5ex] 959 975 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ … … 966 982 \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] 967 983 \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.1+4.2:\hfill{\bf 968 352.985, 00\,\euro}\hfill\hspace*{0pt}\\[-1ex]984 352.985,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] 969 985 \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] 970 986 \hspace*{0.66\textwidth}\hrulefill\\ … … 973 989 \subsection[4.3]{Reisen/Travel expenses} 974 990 975 In total, we apply for an amount of 72.200 \,\euro\ for travelling. This991 In total, we apply for an amount of 72.200,-\,\euro\ for travelling. This 976 992 large amount of travel funding is required due to the very close 977 993 cooperation between Dortmund and W"urzburg and the work demands on the … … 984 1000 or conference: 985 1001 986 2 x 3 years x 1500\,\euro\dotfill 9 000,00\,\euro\\1002 2 x 3 years x 1500\,\euro\dotfill 9.000,-\,\euro\\ 987 1003 988 1004 One participation on the biannual MAGIC collaboration meeting: 989 1005 990 2 x 3 years x 1000\,\euro\dotfill 6 000,00\,\euro\\1006 2 x 3 years x 1000\,\euro\dotfill 6.000,-\,\euro\\ 991 1007 992 1008 PhD student exchange between W"urzburg and Dortmund 993 1009 994 1010 1 student x 1 week x 24 (every six weeks) x 800\,\euro\dotfill 995 19.200, 00\,\euro\\996 997 For setup of the telescope at La Palm ethe following travel expenses1011 19.200,-\,\euro\\ 1012 1013 For setup of the telescope at La Palma the following travel expenses 998 1014 are necessary: 999 1015 1000 1016 4 x 2 weeks at La Palma x 2 persons x 1800\,\euro\dotfill 1001 28.800, 00\,\euro\\1017 28.800,-\,\euro\\ 1002 1018 %} 1003 1019 \end{quote} … … 1093 1109 1094 1110 The group of the newly appointed {\em Lehrstuhl f"ur Physik und Ihre 1095 Didaktik} (Prof.~Dr.~Thomas Trefzger }has expressed their interest to1111 Didaktik} (Prof.~Dr.~Thomas Trefzger) has expressed their interest to 1096 1112 join the project. They bring in a laboratory for photo-sensor testing, 1097 1113 know-how from former contributions to ATLAS and a joint interest in … … 1167 1183 1168 1184 \newpage 1169 \section[8]{Verzeichnis der Anlagen/List of append ages}1185 \section[8]{Verzeichnis der Anlagen/List of appendices} 1170 1186 1171 1187 \begin{itemize}
Note:
See TracChangeset
for help on using the changeset viewer.