Changes between Version 230 and Version 231 of DatabaseBasedAnalysis/Spectrum


Ignore:
Timestamp:
12/09/19 18:06:20 (5 years ago)
Author:
tbretz
Comment:

--

Legend:

Unmodified
Added
Removed
Modified
  • DatabaseBasedAnalysis/Spectrum

    v230 v231  
    6464Assuming Gaussian errors, the statistical error is thus
    6565
    66 \[\sigma^2(N_\textrm{exc}) = \left(\frac{dN_\textrm{exc}}{dN_\textrm{sig}}\right)^2\sigma^2(N_\textrm{sig}) +  \left(\frac{dN_\textrm{exc}}{d\hat N_\textrm{bg}}\right)^2\sigma^2(\hat N_\textrm{bg})\]
     66\[\sigma^2(N_\textrm{exc}) = \left(\frac{dN_\textrm{exc}}{dN_\textrm{sig}}\right)^2\sigma^2(N_\textrm{sig}) +  \left(\frac{dN_\textrm{exc}}{d\hat N_\textrm{bg}}\right)^2\sigma^2(\hat N_\textrm{bg})= \sigma^2(N_\textrm{sig}) + \frac{1}{5^2}\sigma^2(N_\textrm{bg})\]
    6767
    6868For data this immediately resolves to
     
    7171
    7272with the Poisson (counting) error \(\sigma^2(N_\textrm{sig,bg}) = N_\textrm{sig,bg}\).
    73 
    74 For the simulations, the error on \(N\) is the error on the weighted sum
    75 
    76 \[\sigma^2(N_\textrm{exc}) = \sigma^2(N_\textrm{sig}) + \frac{1}{5^2}\sigma^2(N_\textrm{bg})\]
    7773
    7874=== Code ===