Changes between Version 230 and Version 231 of DatabaseBasedAnalysis/Spectrum
- Timestamp:
- 12/09/19 18:06:20 (5 years ago)
Legend:
- Unmodified
- Added
- Removed
- Modified
-
DatabaseBasedAnalysis/Spectrum
v230 v231 64 64 Assuming Gaussian errors, the statistical error is thus 65 65 66 \[\sigma^2(N_\textrm{exc}) = \left(\frac{dN_\textrm{exc}}{dN_\textrm{sig}}\right)^2\sigma^2(N_\textrm{sig}) + \left(\frac{dN_\textrm{exc}}{d\hat N_\textrm{bg}}\right)^2\sigma^2(\hat N_\textrm{bg}) \]66 \[\sigma^2(N_\textrm{exc}) = \left(\frac{dN_\textrm{exc}}{dN_\textrm{sig}}\right)^2\sigma^2(N_\textrm{sig}) + \left(\frac{dN_\textrm{exc}}{d\hat N_\textrm{bg}}\right)^2\sigma^2(\hat N_\textrm{bg})= \sigma^2(N_\textrm{sig}) + \frac{1}{5^2}\sigma^2(N_\textrm{bg})\] 67 67 68 68 For data this immediately resolves to … … 71 71 72 72 with the Poisson (counting) error \(\sigma^2(N_\textrm{sig,bg}) = N_\textrm{sig,bg}\). 73 74 For the simulations, the error on \(N\) is the error on the weighted sum75 76 \[\sigma^2(N_\textrm{exc}) = \sigma^2(N_\textrm{sig}) + \frac{1}{5^2}\sigma^2(N_\textrm{bg})\]77 73 78 74 === Code ===