Changeset 8781 for trunk/Dwarf/Documents/ApplicationDFG/application.tex
- Timestamp:
- 12/11/07 09:40:50 (17 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
trunk/Dwarf/Documents/ApplicationDFG/application.tex
r8777 r8781 42 42 \maketitle 43 43 \newpage 44 x 44 \mbox{} 45 45 \thispagestyle{empty} 46 46 \cleardoublepage … … 117 117 %\subsection[1.6]{Summary} 118 118 We propose to set up a robotic imaging air-Cherenkov telescope with low 119 cost, but a high performance design for remote operation. The goal is to120 dedicate this gamma-ray telescope to long-term monitoring observations 121 of nearby, bright blazars at very high energies. We will (i) search for122 orbital modulation of the blazar emission due to supermassive black 123 hole binaries, (ii) study the statistics of flares and their physical 124 origin, and (iii) correlate the data with corresponding data from the 125 neutrino observatory IceCube to search for evidence of hadronic 126 emission processes. The observations will furthermore trigger follow-up 127 observations of flares with higher sensitivity telescopes such as 128 MAGIC, VERITAS and H.E.S.S.\ Joint observations with the Whipple129 monitoring telescope will start a future 24\,h-monitoring of selected 130 sources with a distributed network of robotic telescopes. The telescope131 design is based on a complete technological upgrade of one of the former 132 telescopes of the HEGRA collaboration (CT3) still located at the 133 Observatorio Roque de los Muchachos on the Canarian Island La Palma 134 (Spain). After this upgrade, the telescope will be operated 135 robotically, a much lower energy threshold below 350\,GeV will be136 achieved and the observation time required for gaining the same signal 137 as with CT3 will be reduced by afactor of six.119 cost, but a high performance design for remote operation. The goal is 120 the long-term monitoring observations of nearby, bright blazars at very 121 high energies. We will (i) search for orbital modulation of the blazar 122 emission due to supermassive black hole binaries, (ii) study the 123 statistics of flares and their physical origin, and (iii) correlate the 124 data with corresponding data from the neutrino observatory IceCube to 125 search for evidence of hadronic emission processes. The observations 126 will furthermore trigger follow-up observations of flares with higher 127 sensitivity telescopes such as MAGIC, \mbox{VERITAS} and H.E.S.S. Joint 128 observations with the Whipple monitoring telescope will start a future 129 \mbox{24\,h-monitoring} of selected sources with a distributed network of 130 robotic telescopes. The telescope design is based on a complete 131 technological upgrade of one of the former telescopes of the HEGRA 132 collaboration (CT3) still located at the Observatorio del Roque de los 133 Muchachos on the Canary Island La Palma (Spain). After this upgrade, 134 the telescope will be operated robotically, a much lower energy 135 threshold below 350\,GeV will be achieved, and the observation time 136 required for gaining the same signal as with CT3 will be reduced by a 137 factor of six. 138 138 139 139 \germanTeX 140 140 \paragraph{\bf 1.6 Zusammenfassung}~\\ 141 141 %\subsection[1.6]{Zusammenfassung} 142 {\bf Unser Vorhaben besteht darin, ein robotisches Luft-Cherenkov-Teleskop 143 mit geringen Kosten aber hoher Leistung fernsteuerbar in Betrieb zu 144 nehmen. Das Ziel ist es, dieses Gammastrahlen Teleskop ganz der 145 Langzeitbeobachtung von nahen, hellen Blazaren bei sehr hohen Energien 146 zu widmen. Wir werden (i) nach Modulationen der Blazar-Emission durch 147 Bin"arsysteme von supermassiven Schwarzen L"ochern suchen, (ii) die 148 Statistik von gamma-Ausbr"uchen und deren physikalischen Ursprung 149 untersuchen und (iii) die Daten mit entsprechenden Daten von dem 150 Neutrino-Teleskop IceCube korrelieren, um Nachweise f"ur hadronische 151 Emissionsprozesse zu finden. Die Beobachtungen werden zus"atzlich 152 Nachfolgebeobachtungen von gamma-Ausbr"uchen mit h"ohersensitiven 153 Teleskopen wie MAGIC, VERITAS und H.E.S.S.\ triggern. Aufeinander 154 abgestimmte Beobachtungen zusammen mit dem Whipple Teleskop werden der 155 Auftakt zu einer zuk"unftigen 24-Stunden-Beobachtung von selektierten 156 Quellen mit einem verteilten Netzwerk robotischer Cherenkov-Teleskope 157 sein. Das Teleskop-Design basiert auf einem kompletten technologischen 158 Upgrade eines der Teleskope der fr"uheren HEGRA-Kollaboration, welches 159 noch immer am Observatorio Roque de los Muchachos auf der kanarischen 160 Insel La Palma (Spanien) gelegen ist. Nach diesem Upgrade wird das 161 Teleskop robotisch betrieben werden und eine wesentlich geringere 162 Energieschwelle von unter 350\,GeV aufweisen, w"ahrend gleichzeitig die 163 notwendige Beobachtungszeit, um dasselbe Signal wie CT3 zu erhalten, um 164 einen Faktor sechs verringert wird.} 165 \originalTeX 142 Das Ziel unseres Vorhabens ist es, ein abbildendes 143 Luft-Cherenkov-Teleskop mit geringen Kosten, aber hoher Leistung f"ur 144 den ferngesteuerten Betrieb aufzubauen. Die Motivation ist die 145 kontinuierliche Langzeitbeobachtung von hellen, nahen Blazaren bei sehr 146 hohen Energien. Mit diesen Beobachtungen werden wir nach 147 bahndynamischen Modulationen suchen, welche von Bin"arsystemen 148 supermassiver schwarzer L"ocher in der emittierten Strahlung 149 hervorgerufen werden. Au"serdem werden die gewonnenen Daten mit den 150 entsprechenden Daten des Neutrinoteleskops IceCube korreliert, um nach 151 Hinweisen f"ur hadroninduzierte Emissionsprozesse zu suchen. Die 152 kontinuierliche "Uberwachung ausgew"ahlter Quellen wird zudem besser 153 aufgel"oste Beobachtungen und Nachbeobachtungen von 154 Strahlungsausbr"uchen durch Teleskope h"oherer Sensitivit"at, wie z.B.\ 155 MAGIC, VERITAS und H.E.S.S., erlauben. Die zeitversetzten, gemeinsamen 156 Beobachtungen zusammen mit dem Whipple-Teleskop stellen den Beginn 157 ununterbrochener Beobachtungen mit einem weltweiten Netzwerk 158 robotischer Teleskope dar. Unser Teleskopdesign basiert auf einer 159 technischen Runderneuerung eines Teleskops der fr"uheren 160 HEGRA-Kollaboration (CT3), welches noch immer am Observatorio del Roque de 161 los Muchachos auf der Kanarischen Insel La Palma (Spanien) steht. Nach 162 dieser Aufr"ustung wird das Teleskop vollst"andig ferngesteuert 163 betrieben werden, eine viel niedrigere Energieschwelle von unter 164 350\,GeV erreichen und die Beobachtungszeit, um ein gleichstarkes 165 Signal wie mit CT3 zu erhalten, wird um einen Faktor sechs k"urzer 166 sein. 167 \originalTeX 166 168 \newpage 167 169 … … 322 324 exposure simultaneous to the VHE observations, and this is a new 323 325 qualitative step for blazar research. For the same reasons, the VERITAS 324 collaboration keeps the formerWhipple telescope alive, albeit its326 collaboration keeps the Whipple telescope alive, albeit its 325 327 performance seems to have strongly degraded. It is obvious that the 326 328 large Cherenkov telescopes such as MAGIC, H.E.S.S.\ or VERITAS are mainly … … 436 438 model \citep{Haffke:Dipl,Schroeder:PhD} for the local atmosphere of La 437 439 Palma. Furthermore the group has developed high precision Monte Carlos 438 for Lepton propagation in different media 439 %\citep{hepph0407075}. An 440 \citep{xxx}. 440 for Lepton propagation in different media \citep{Chirkin:2004}. 441 441 An energy unfolding method and program has been adapted for IceCube and 442 442 MAGIC data analysis \citep{Curtef:CM,Muenich:ICRC}. … … 520 520 targets will be visible any time of the year (see 521 521 fig.~\ref{visibility}). For calibration purposes, some time will be 522 scheduled for observations of the Crab Nebula.\\522 scheduled for observations of the Crab \mbox{Nebula}.\\ 523 523 524 524 The blazar observations will allow … … 573 573 \begin{center} 574 574 \includegraphics*[width=\textwidth,angle=0,clip]{schedule.eps} 575 % \caption{Left: The old HEGRA CT3 telescope as operated within the 576 % HEGRA Sytem. Right: A photomontage how the revised CT3 telescope 577 % could look like with more and hexagonal mirrors.} 575 \caption{Work schedule for the expected funding period of three years. 576 More details about the work distribution is given in the text.} 578 577 \label{schedule} 579 578 %\label{DWARF} … … 644 643 none 645 644 646 \clearpage 645 \clearpage 647 646 648 647 \section[4]{Funds requested (Beantragte Mittel)} … … 668 667 \subsection[4.2]{Scientific equipment (Wissenschaftliche Ger\"{a}te)} 669 668 670 At the Observatorio Roque de los Muchachos (ORM), at the MAGIC site,669 At the Observatorio del Roque de los Muchachos (ORM), at the MAGIC site, 671 670 the mount of the former HEGRA telescope CT3 now owned by the MAGIC 672 671 collaboration is still serviceable. One hut for electronics close to … … 677 676 autonomous robotic operation is the primary goal. 678 677 679 To achieve the planned sensitivity and threshold680 (fig.~\ref{sensitivity}), the following components have to be bought.681 To obtain reliable results as fast as possible well known components682 have been chosen.683 678 \begin{figure}[hb] 684 679 \centering{ 685 \includegraphics[width=0.605\textwidth]{sensitivity.eps} 680 %\includegraphics[width=0.605\textwidth]{sensitivity.eps} 681 \includegraphics[width=0.70\textwidth]{sensitivity.eps} 686 682 \caption{Integral flux sensitivity of several telescopes 687 683 \citep{Juan:2000,MAGICsensi,Vassiliev:1999} … … 691 687 } \label{sensitivity} } 692 688 \end{figure} 693 \clearpage 689 690 To achieve the planned sensitivity and threshold 691 (fig.~\ref{sensitivity}), the following components have to be bought. 692 To obtain reliable results as fast as possible well known components 693 have been chosen.\\ 694 694 695 {\bf Camera}\dotfill 206.450,-\,\euro\\[-3ex] 695 696 \begin{quote} … … 787 788 \end{quote}\vspace{3ex} 788 789 790 \newpage 789 791 {\bf Data acquisition}\dotfill 61.035,-\,\euro\\[-3ex] 790 792 \begin{quote} … … 909 911 \begin{quote} 910 912 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 911 On-site\hfill 12.000,-\,\euro\\912 913 Three PCs\hfill 8.000,-\,\euro\\ 913 914 SATA RAID 3TB\hfill 4.000,-\,\euro\\ … … 982 983 \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] 983 984 \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.2:\hfill{\bf 984 34 0.635,-\,\euro}\hfill\hspace*{0pt}\\[-1ex]985 341.135,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] 985 986 \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] 986 987 \hspace*{0.66\textwidth}\hrulefill\\ … … 1050 1051 \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] 1051 1052 \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.4:\hfill{\bf 1052 72.200,-\,\euro}\hfill\hspace*{0pt}\\[-1ex]1053 63.000,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] 1053 1054 \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] 1054 1055 \hspace*{0.66\textwidth}\hrulefill\\ … … 1231 1232 \thispagestyle{empty} 1232 1233 \newpage 1233 x 1234 \mbox{} 1234 1235 \thispagestyle{empty} 1235 1236 \newpage … … 1240 1241 %Schriftenverzeichnis der Antragsteller seit dem Jahr 2000 1241 1242 List of refereed publications of the applicants since 2000 1243 \item Appendix A: Chapter 4 in German 1242 1244 \item CV of Karl Mannheim 1243 1245 \item CV of Wolfgang Rhode … … 1249 1251 \end{itemize} 1250 1252 \newpage 1251 x 1253 \mbox{} 1252 1254 \thispagestyle{empty} 1253 1255 \newpage 1256 1257 \appendix 1258 \germanTeX 1259 \section[4]{Beantragte Mittel} 1260 1261 Die beantragten Mittel werden durch die Ausgaben f"ur die Kamera und 1262 die Datennahme dominiert. Wir beantragen eine F"orderung von drei Jahren. 1263 1264 \subsection[4.1]{Personalkosten} 1265 1266 F"ur diesen Zeitraum beantragen wir die Finanzierung von zwei Postdocs 1267 und zwei Doktoranden, jeweils einer in Dortmund und einer in W"urzburg 1268 (3\,x\,TV-L13). Mit den besetzten Stellen sollen die erw"ahnten Arbeiten 1269 zur Planung und zum Bau des Teleskops durchgef"uhrt werden. Zus"atzlich 1270 wird noch eine schwankende Zahl an Doktoranden und Diplomanden 1271 zur Verf"ugung stehen. 1272 1273 Interessierte Kandidaten sind Dr.\ Thomas 1274 Bretz, Dr.\ dest.\ Daniela Dorner, Dr.\ dest.\ Kirsten M\"{u}nich, 1275 cand.\ phys.\ Michael Backes, cand.\ phys.\ Daniela Hadasch und cand.\ 1276 phys.\ Dominik Neise. 1277 1278 \subsection[4.2]{Wissenschaftliche Ger\"{a}te} 1279 1280 Am Observatorio del Roque de los Muchachos (ORM), nahe dem MAGIC 1281 Teleskop, steht noch das ehemalige HEGRA-Teleskop (CT3) zur Verf"ugung. 1282 Es ist noch immer nutzbar und geh"ort jetzt der MAGIC Kollaboration. 1283 Au"serdem ist noch ein Container zur Unterbringung von Elektronik, 1284 sowie weiterer Platz im MAGIC-eignenen Haus vorhanden. Der Memorandum 1285 of Understanding der MAGIC-Kollaboration erlaubt uns den Betrieb des 1286 Teleskops als DWARF (see Anlage). F"ur Notfallsituationen steht die 1287 MAGIC Schichtmannschaft zur Verf"ugung. 1288 1289 Um die angestrebte Sensitivit"at und Energieschwelle (fig.~\ref{sensitivity}) 1290 in m"oglichgst kurzer Zeit zu erreichen, wurden die folgenden 1291 Komponenten ausgew"ahlt. Einzelheiten zu den Auswahlkriterien k"onnen 1292 im Kapitel~4 nachgelesen werden.\\ 1293 1294 {\bf Kamera}\dotfill 206.450,-\,\euro\\[-3ex] 1295 \begin{quote} 1296 F"ur eine Kamera mit 313 Pixel werden folgende Komponenten ben"otigt:\\ 1297 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 1298 Photomultiplier R"ohre EMI\,9083B\hfill 220,-\,\euro\\ 1299 Aktiver Spannungsteiler (EMI)\hfill 80,-\,\euro\\ 1300 Hochspannungsversorgung und -kontrolle\hfill 300,-\,\euro\\ 1301 Vorverst"arker\hfill 50,-\,\euro\\ 1302 Ersatzteile (pauschal)\hfill 3000,-\,\euro\\ 1303 \end{minipage}\\[-0.5ex] 1304 %For long-term observations, the stability of the camera is a major 1305 %criterion. To keep the systematic errors small, a good background 1306 %estimation is mandatory. The only possibility for a synchronous 1307 %determination of the background is the measurement from the night-sky 1308 %observed in the same field-of-view with the same instrument. To achieve 1309 %this, the observed position is moved out of the camera center which 1310 %allows the estimation of the background from positions symmetric with 1311 %respect to the camera center (so called Wobble mode). This observation 1312 %mode increases the sensitivity by a factor of $\sqrt{2}$, because 1313 %spending observation time for dedicated background observations becomes 1314 %obsolete, i.e.\ observation time for the source is doubled. This 1315 %ensures in addition a better time coverage of the observed sources.\\ 1316 %A further increase in sensitivity can be achieved by better background 1317 %statistics from not only one but several independent positions for the 1318 %background estimation in the camera \citep{Lessard:2001}. To allow for 1319 %this the source position in Wobble mode should be shifted 1320 %$0.6^\circ-0.7^\circ$ out of the camera center. 1321 % 1322 %A camera completely containing the shower images of events in the energy 1323 %region of 1\,TeV-10\,TeV should have a diameter in the order of 1324 %5$^\circ$. To decrease the dependence of the measurements on the camera 1325 %geometry, a camera layout as symmetric as possible will be chosen. 1326 %Consequently a camera allowing to fulfill these requirements should be 1327 %round and have a diameter of $4.5^\circ-5.0^\circ$. 1328 % 1329 %Therefore a camera with 313 pixel camera (see fig.~\ref{camDWARF}) is 1330 %chosen. The camera will be built based on the experience with HEGRA and 1331 %MAGIC. 19\,mm diameter Photomultiplier Tubes (PM, EMI\,9083B/KFLA-UD) 1332 %will be bought, similar to the HEGRA type (EMI\,9083\,KFLA). They have 1333 %a quantum efficiency improved by 25\% (see fig.~\ref{qe}) and ensure a 1334 %granularity which is enough to guarantee good results even below the 1335 %energy threshold (flux peak energy). Each individual pixel has to be 1336 %equipped with a preamplifier, an active high-voltage supply and 1337 %control. The total expense for a single pixel will be in the order of 1338 %650,-\,\euro. 1339 % 1340 %All possibilities of borrowing one of the old HEGRA cameras for a 1341 %transition time have been probed and refused by the owners of the 1342 %cameras. 1343 % 1344 %At ETH~Z\"{u}rich currently test measurements are ongoing to prove the 1345 %ability, i.e.\ stability, aging, quantum efficiency, etc., of using 1346 %Geiger-mode APDs (GAPD) as photon detectors in the camera of a 1347 %Cherenkov telescope. The advantages are an extremely high quantum 1348 %efficiency ($>$50\%), easier gain stabilization and simplified 1349 %application compared to classical PMs. If these test measurements are 1350 %successfully finished until 8/2008, we consider to use GAPDs in favor 1351 %of classical PMs. The design of such a camera would take place at 1352 %University Dortmund in close collaboration with the experts from ETH. 1353 %The construction would also take place at the electronics workshop of 1354 %Dortmund. 1355 \end{quote}\vspace{3ex} 1356 \newpage 1357 {\bf Kameraaufh"angung und -geh"ause}\dotfill 7.500,-\,\euro\\[-3ex] 1358 \begin{quote} 1359 %For this setup the camera holding has to be redesigned. (1500,-\,\euro) 1360 %The camera chassis must be water tight and will be equipped with an 1361 %automatic lid, protecting the PMs at daytime. For further protection, a 1362 %plexi-glass window will be installed in front of the camera. By coating 1363 %this window with an anti-reflex layer of magnesium-fluoride, a gain in 1364 %transmission of 5\% is expected. Each PM will be equipped with a 1365 %light-guide (Winston cone) as developed by UC Davis and successfully in 1366 %operation in the MAGIC camera. (3000,-\,\euro\ for all Winston cones). The 1367 %current design will be improved by using a high reflectivity aluminized 1368 %Mylar mirror-foil, coated with a dialectical layer ($Si\,O_2$ 1369 %alternated with Niobium Oxide), to reach a reflectivity in the order of 1370 %98\%. An electric and optical shielding of the individual PMs is 1371 %planned. 1372 % 1373 %In total a gain of $\sim$15\% in light-collection 1374 %efficiency compared to the old CT3 system can be achieved. 1375 \end{quote}%\vspace{1ex} 1376 {\bf Datanahme}\dotfill 61.035,-\,\euro\\[-3ex] 1377 \begin{quote} 1378 313 Pixels\\ 1379 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 1380 Auslese\hfill 95,-\,\euro\\ 1381 Triggerelektronik\hfill 100,-\,\euro\\ 1382 \end{minipage}\\[-0.5ex] 1383 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 1384 %For the data acquisition system a hardware readout based on an analog 1385 %ring buffer (Domino\ II/IV), currently developed for the MAGIC~II 1386 %readout, will be used \citep{Barcelo}. This technology allows to sample 1387 %the pulses with high frequencies and readout several channels with a 1388 %single Flash-ADC resulting in low costs. The low power consumption will 1389 %allow to include the digitization near the signal source making 1390 %the transfer of the analog signal obsolete. This results in less 1391 %pick-up noise and reduces the signal dispersion. By high sampling rates 1392 %(1.2\,GHz), additional information about the pulse shape can be 1393 %obtained. This increases the over-all sensitivity further, because the 1394 %short integration time allows for almost perfect suppression of noise 1395 %due to night-sky background photons. The estimated trigger-, i.e.\ 1396 %readout-rate of the telescope is below 100\,Hz (HEGRA: $<$10\,Hz) which 1397 %allows to use a low-cost industrial solution for readout of the system, 1398 %like USB\,2.0. 1399 % 1400 %Current results obtained with the new 2\,GHz FADC system in the MAGIC 1401 %data acquisition show, that for a single telescope a sensitivity 1402 %improvement of 40\% with a fast FADC system is achievable \citep{Tescaro:2007}. 1403 % 1404 %Like for the HEGRA telescopes a simple multiplicity trigger is 1405 %sufficient, but also a simple neighbor-logic could be programmed (both 1406 %cases $\sim$100,-\,\euro/channel). 1407 % 1408 %Additional data reduction and preprocessing within the readout chain is 1409 %provided. Assuming conservatively a readout rate of 30\,Hz, the storage 1410 %space needed will be less than 250\,GB/month or 3\,TB/year. This amount 1411 %of data can easily be stored and processed by the W\"{u}rzburg 1412 %Datacenter (current capacity $>$80\,TB, $>$40\,CPUs). 1413 \end{quote}\vspace{3ex} 1414 1415 {\bf Spiegel}\dotfill 15.000,-\,\euro\\[-3ex] 1416 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 1417 \begin{quote} 1418 %The existing mirrors will be replaced by new plastic mirrors currently 1419 %developed by Wolfgang Dr\"{o}ge's group. The cheap and light-weight 1420 %material has been formerly used for Winston cones in balloon 1421 %experiments. The mirrors are copied from a master and coated with a 1422 %reflecting and a protective material. Tests have given promising 1423 %results. By a change of the mirror geometry, the mirror area can be 1424 %increased from 8.5\,m$^2$ to 13\,m$^2$ (see picture~\ref{CT3} and 1425 %montage~\ref{DWARF}). This includes an increase of $\sim$10$\%$ per 1426 %mirror by using a hexagonal layout instead of a round one. A further 1427 %increase of the mirror area would require a reconstruction of parts of 1428 %the mount and will therefore be considered only in a later phase of the 1429 %experiment. 1430 % 1431 %If the current development of the plastic mirrors cannot be finished in 1432 %time, a re-machining of the old glass mirrors (8.5\,m$^2$) is possible 1433 %with high purity aluminum and quartz coating. 1434 % 1435 %In both cases the mirrors can be coated with the same high reflectivity 1436 %aluminized Mylar mirror-foil and a dialectical layer of $SiO_2$ as for 1437 %the Winston cones. By this, a gain in reflectivity of $\sim10\%$ is 1438 %achieved, see fig.~\ref{reflectivity} \citep{Fraunhofer}. Both 1439 %solutions would require the same expenses. 1440 % 1441 %To keep track of the alignment, reflectivity and optical quality of the 1442 %individual mirrors and the point-spread function of the total mirror 1443 %during long-term observations, the application of an automatic mirror 1444 %adjustment system, as developed by ETH~Z\"{u}rich and successfully 1445 %operated on the MAGIC telescope, is intended. 1446 \end{quote}%\vspace{3ex} 1447 {\bf Kalibrationssystem}\dotfill 9.650,-\,\euro\\[-3ex] 1448 \begin{quote} 1449 Einzelkomponenten\\ 1450 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 1451 Absolute Lichtkalibration\hfill 2.000,-\,\euro\\ 1452 Messung der Trigger Rate einzelner Pixel\hfill 3.000,-\,\euro\\ 1453 Wetterstation\hfill 500,-\,\euro\\ 1454 GPS gesteuerte Uhr\hfill 1.500,-\,\euro\\ 1455 CCD Kameras mit Auslese\hfill 2.650,-\,\euro\\ 1456 \end{minipage}\\[-0.5ex] 1457 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 1458 %For the absolute light calibration (gain-calibration) of the PMs a 1459 %calibration box, as successfully used in the MAGIC telescope, will be 1460 %produced. 1461 % 1462 %To ensure a homogeneous acceptance of the camera, essential for 1463 %Wobble mode observations, the trigger rate of the individual pixels 1464 %will be measured and controlled. 1465 % 1466 %For a correction of axis misalignments and possible deformations of the 1467 %structure (e.g.\ bending of camera holding masts) a pointing correction 1468 %algorithm will be applied, as used in the MAGIC tracking system. It is 1469 %calibrated by measurements of the reflection of bright guide stars on 1470 %the camera surface and ensures a pointing accuracy well below the pixel 1471 %diameter. Therefore a high sensitive low-cost video camera, as for 1472 %MAGIC\ I and~II, (300,-\,\euro\ camera, 600,-\,\euro\ optics, 1473 %300,-\,\euro\ housing, 250,-\,\euro\ frame grabber) will be installed. 1474 % 1475 %A second identical CCD camera for online monitoring (starguider) will 1476 %be bought. 1477 % 1478 %For an accurate tracking a GPS clock is necessary. The weather station 1479 %helps judging the data quality. 1480 %}\\[2ex] 1481 \end{quote}\vspace{3ex} 1482 1483 {\bf Computing}\dotfill 12.000,-\,\euro\\[-3ex] 1484 \begin{quote} 1485 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 1486 Drei PCs\hfill 8.000,-\,\euro\\ 1487 SATA RAID 3TB\hfill 4.000,-\,\euro\\ 1488 \end{minipage}\\[-0.5ex] 1489 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 1490 %For on-site computing three standard PCs are needed ($\sim$8.000,-\,\euro). 1491 %This includes readout and storage, preprocessing and telescope control. 1492 %For safety reasons, a firewall is mandatory. For local cache-storage 1493 %and backup, two RAID\,5 SATA disk arrays with one Terabyte capacity 1494 %each will fulfill the requirement ($\sim$4.000,-\,\euro). The data will be 1495 %transmitted as soon as possible after data taking via Internet to the 1496 %W\"{u}rzburg Datacenter. Enough storage capacity and computing power 1497 %is available there and already reserved for this purpose. 1498 % 1499 %Monte Carlo production and storage will take place at University 1500 %Dortmund.%}\\[2ex] 1501 \end{quote}\vspace{3ex} 1502 1503 {\bf Antrieb und Positionsauslese}\dotfill 17.500,-\,\euro\\[-3ex] 1504 \begin{quote} 1505 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 1506 %The present mount is used. Only a smaller investment for safety, 1507 %corrosion protection, cable ducts, etc. is needed (7.500,-\,\euro). 1508 % 1509 %Motors, shaft encoders and control electronics in the order of 1510 %10.000,-\,\euro\ have to be bought. The costs have been estimated with 1511 %the experience from building the MAGIC drive systems. The DWARF drive 1512 %system should allow for relatively fast repositioning for three 1513 %reasons: (i)~Fast movement might be mandatory for future ToO 1514 %observations. (ii)~Wobble mode observations will be done changing the 1515 %Wobble-position continuously (each 20\,min) for symmetry reasons. 1516 %(iii)~To ensure good time coverage of more than one source visible at 1517 %the same time, the observed source will be changed in constant time 1518 %intervals. 1519 % 1520 %For the drive system three 150\,Watt servo motors are intended to be bought. A 1521 %micro-controller based motion control unit (Siemens SPS L\,20) similar to 1522 %the one of the current MAGIC~II drive system will be used. For 1523 %communication with the readout-system, a standard Ethernet connection 1524 %based on the TCP/IP- and UDP-protocol will be setup. 1525 %}\\[2ex] 1526 \end{quote}%\vspace{3ex} 1527 % 1528 {\bf Sicherheit}\dotfill 4.000,-\,\euro\\[-3ex] 1529 \begin{quote} 1530 \parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 1531 Unterbrechungsfreie Stromversorgung (UPS)\hfill 2.000,-\,\euro\\ 1532 Sicherheitszaun\hfill 2.000,-\,\euro\\ 1533 \end{minipage}\\[-0.5ex] 1534 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 1535 %A UPS with 5\,kW-10\,kW will be 1536 %installed to protect the equipment against power cuts and ensure a safe 1537 %telescope position at the time of sunrise. 1538 % 1539 %For protection in case of robotic movement a fence will be 1540 %installed.%}\\[2ex] 1541 \end{quote}\vspace{3ex} 1542 1543 {\bf Andere Ausgaben}\dotfill 7.500,-\,\euro\\[-3ex] 1544 \begin{quote} 1545 %\parbox[t]{1em}{~}\begin{minipage}[t]{0.6\textwidth} 1546 % Robotics\hfill 7.500,-\,\euro\\ 1547 % \end{minipage}\\[-0.5ex] 1548 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 1549 F"ur den Betrieb in Fernsteuerung 1550 werden verschiedene fernbedienbare Komponenten, wie z.B.\ 1551 Ethernet steuerbare Steckdosen und "Uberwachungselektronik, gekauft. 1552 \end{quote} 1553 \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] 1554 \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.2:\hfill{\bf 1555 341.135,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] 1556 \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] 1557 \hspace*{0.66\textwidth}\hrulefill\\ 1558 1559 \subsection[4.3]{Verbrauchsmaterial} 1560 1561 \begin{quote} 1562 % \parbox[t]{1em}{~}\begin{minipage}[t]{0.9\textwidth} 1563 10 LTO\,4 B"ander (8\,TB)\dotfill 750,-\,\euro\\ 1564 Verbrauchsgegenst"ande (pauschal): Werkzeug und Meterialien\dotfill 10.000,-\,\euro 1565 % \end{minipage}\\[-0.5ex] 1566 \end{quote} 1567 1568 \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] 1569 \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.3:\hfill{\bf 1570 10.750,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] 1571 \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] 1572 \hspace*{0.66\textwidth}\hrulefill\\ 1573 1574 \subsection[4.4]{Reisen} 1575 Die hohen Reisekosten sind in der engen Zusammenarbeit zwischen 1576 Dortmund und W"urzburg, sowie den notwendigen Aufenthalten in La Palma 1577 begr"undet.\\[-2ex] 1578 1579 \begin{quote} 1580 %\parbox[t]{1em}{~}\parbox[t]{0.955\textwidth}{ 1581 Jedes Jahr sollte ein erfahrenes Gruppenmitglied aus Dortmund und 1582 W"urzburg den Status des Projektes bei einer internationalen Konferenz 1583 vorstellen:\\ 1584 2 x 3\,Jahre x 1.500,-\,\euro\dotfill 9.000,-\,\euro\\[-2ex] 1585 1586 Teilnahme am MAGIC Kollaborationstreffen (zweimal j"ahrlich):\\ 1587 2 x 3\,Jahre x 1.000,-\,\euro\dotfill 6.000,-\,\euro\\[-2ex] 1588 1589 Austausch von Doktoranden zwischen W\"{u}rzburg and Dortmund:\\ 1590 1\,Student x 1\,Woche x 24 (alle sechs Wochen) x 800,-\,\euro\dotfill 1591 19.200,-\,\euro\\[-2ex] 1592 1593 Zum Aufbau des Teleskops vor Ort werden sind Ausgaben n"otig:\\ 1594 4 x 2\,Wochen auf La Palma x 2\,Personen x 1.800,-\,\euro\dotfill 1595 28.800,-\,\euro 1596 %} 1597 \end{quote} 1598 1599 \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] 1600 \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.4:\hfill{\bf 1601 63.000,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] 1602 \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] 1603 \hspace*{0.66\textwidth}\hrulefill\\ 1604 1605 1606 \subsection[4.5]{Publikationskosten} 1607 Werden von den beantragenden Universit"aten "ubernommen. 1608 1609 1610 \subsection[4.6]{Sonstige Kosten} 1611 \begin{quote} 1612 Euro-Container (zum Versandt der Spiegel)\dotfill 5.000,-\,\euro\\ 1613 Transport\dotfill 15.000,-\,\euro\\ 1614 Abbau (wird von den Antragstellern "ubernommen)\dotfill n/a 1615 \end{quote} 1616 1617 \hspace*{0.66\textwidth}\hrulefill\\[0.5ex] 1618 \hspace*{0.66\textwidth}\hspace{0.5ex}\hfill Sum 4.6:\hfill{\bf 1619 20.000,-\,\euro}\hfill\hspace*{0pt}\\[-1ex] 1620 \hspace*{0.66\textwidth}\hrulefill\\[-1.9ex] 1621 \hspace*{0.66\textwidth}\hrulefill\\ 1622 1623 \newpage 1624 \thispagestyle{empty} 1625 \mbox{} 1626 \newpage 1627 1628 \originalTeX 1254 1629 1255 1630 %(References of our groups are marked by an asterix *)
Note:
See TracChangeset
for help on using the changeset viewer.